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This report examines the electrical properties of ice in the frequency range of 0-
107 Hz, attempting to be suitable both as a simple and clear textbook for
students and non-specialists and as a comprehensive review of recent
developments and discoveries in the field. Corresponding to this double goal,
the report consists of two parts. The first one is written In textbook style and
contains most general theoretical and experimental results essential for
understanding of unique electrical properties of ice. The theorefical interpretation
of Ice conductivity and ice dielectric permittivity is based on Ice being a protonic
semiconductor. Jaccard's elegant model is used to mathematically describe the
electrical properties, and is expanded on cases of ice samples having finite size,
boundaries and interfaces, and an inhornogeneous electric field. The statistics
of charge carriers in pure and doped Ice Is discussed in detail, as are
experimental techniques for measurements of conductivity and dielectric
permittivity. The first part contains a comprehensive review of experimental
results on ice conductivity, ice dielectric permittivity, mobility and electric
charges of protonic charge corrids and activation energies of their generation
and motion. The second part includes more complicated physical phenomena-
proton injection, dielectric crossover, ice field effect transistor, thermostimulated
currents, theory of ice/metal interface, field extraction of charge carriers and a
recombination injection.

For conversion of SI metric units to U.S./British customary units of measurement
consult ASTM Standard E380-89a, Standard Practice for Use of flnternatlonal
System of Units, published by the American Society for Testing and Materials,
1916 Race St., Philadelphia, Pa. 19103.

This report is printed on paper that contains a minimum of 50% recycled
material.
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FOREWORD

At the present time, thousands and thousands of people around the world deal with ice,
snow and permafrost. They are scientists, educators, engineers, navigators, meteorologists
and others. While a small fraction of these people contribute to the knowledge base in ice
physics, all of them use knowledge from it frequently. Moreover, successful applied research
is based upon fundamental science--one more reason for ice specialists to have a textbook
on ice physics on their desks.

The first modem ice physics text was Fletcher's book on The Chemical Physics of Ice (1970).
Fletcher's book is in typical textbook format: it is reasonably brief and easy to understand.
He touched on a few of the most important topics, but not all of them.

The most comprehensive book on ice physics to date was published by Hobbs in 1974.
Hobbs considered almost all of the basic aspects of ice as understood at that time. Moreover,
he described an,. compared several (sometimes opposing) viewpoints. This fundamental
and rather large (837 pages) book is commonly known as the "Ice Bible" by specialists in the
field. In 1974 and 1975, two monographs on ice were produced by John Glen. These were
briefly and clearly written and reviewed almost all ice-related subjects. This work was (and
in some respects still is) a magnificent introduction to ice.

Finally, in 1981 Maeno wrote a simple, popular book for the express purpose of attracting
people's attention to the subject.

During the past 20 years, a significant amount of new experimental and theoretical work
has appeared, dramatically changing our views on ice physics. As a result, we are now able
to formulate physical laws using more simple and direct methods. We have found some of
the physical models used in the past to be completely wrong. The physics of ice is a much
better developed subject than it was 20 years ago.

For the above reasons, we feel the time is ripe for a contemporary book on ice physics,
incorporating the known and proven with almost 20 years worth of material not covered by
previous works.

I have tried to prepare a "readable" book, and not one that requires the reader to be a
uniquely educated person. It is my intent to present the material in such a way that any reader
attracted by the title Ice Physics will be able to comprehend it. This is quite difficult for a book
dedicated, not to a particular field of knowledge, but to a specific material. Indeed, for ice it
means we have to consider a wide variety of subjects, including quantum chemistry, solid
state physics, the theory of elasticity, ionic conductivity, synchrotron x-ray topography,
crystal growth, the physics of surfaces and more.

The primary goal is to produce as simple a book as possible without sacrificing scientific
accuracy. Experimental facts, physical ideas and theories will be strongly organized and
bound together cohesively. The reader will be introduced to a wide variety of material on a
step by step basis. Then the picture will be whole.

To accelerate materials publication, this book will appear first in the form of a series of
joint CRREL-Dartmouth reports, later to be published in CRREL's Monograph series, on:

1. The structure of ordinary ice
Part I: "Ideal" structure of ice. Ice crystal lattice
Part 11: Real structure of ice. Defects

2. Electrical properties of ice
Part I: Conductivity and dielectric permittivity of ice
Part II: Advanced topics and new physical phenomena

3. Optical properties
4. Electro-optical effects in ice

iii



5. Thermal properties
6. Mechanical properties of ice. Elasticity and anelastic relaxation. Plastic properties.

Fracture of ice
7. Electromechanical effects in ice
8. Surface of ice
9. Other forms of ice and their properties

10. Ice in space
11. Ice research laboratories

The reports will be prepared in a sequence convenient to the author. The present report
is the first in the series.
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NOMENCLATURE

< > sign of averaging
a interatomic space
C capacitance, electric capacitance
D diffusion coefficient

D electric displacement vector
e proton charge

E, E electric field strength
Ea activation energy

EaB energy of creation of a pair of Bjerrum defects
Eai energy of creation of an ion pair
Eas activation energy of static conductivity a,

Ea. activation energy of high-frequency conductivity o.
EH2  electron level on hydrogen system
E0 2  electron level on oxygen system

Ef electron Fermi-level
ei defects' electric charge (i = 1, 2, 3, 4)

Emij activation energies of protonic defects' motion (i = 1, 2, 3, 4)
Ec activation energy of Debye relaxation time
F free energy

Fd free energy of defects
v frequencies
I electric current
i = 1---

flux density of defects (i = 1, 2, 3, 4)
J , electric current density

kB Boltzmann constant
L sample thickness

me electron mass
N number of water molecules
n concentration (in m-3)

nD D-defects concentration
nH20 concentration of water molecules in ice

ni concentration of defects (i = 1, 2, 3, 4)
nL L-defects concentration
A elementary dielectric dipole
P polarization vector

q, ei electric charge of carriers
R electric resistance
ri coordinate of itI particle or dipole

roo oxygen-oxygen distance in ice lattice (2.76 A)
S entropy
s sample surface area

Sc configurational entropy
Sv vibrational entropy

viii



T temperature
t time

U internal energy
UM activation energy of ionic motion

Vd drift velocity
V-i velocity of ith particle

V voltage
W number of configurations of a system

x,y'z coordinates
6(x) delta function

E relative dielectric permittivity

CO dielectric permittivity of a vacuum

ES static dielectric permittivity (o0 << OD)

E_ high-frequency (co>>aD) dielectric permittivity

4 dimensionless factor in Jacca rd theory

1/K screening length

XD diffusion length

P mobility
Vh frequency of proton hops alung a hygrogen bond

p electric charge density

a conductivity

oB Bjerrum defect conductivity oB = 03 + 04

oYi partial conductivity of "i" charge carrier

Oij tensor of conductivity

Oion ionic conductivity Oin = 01 + 02

os static or low-frequency conductivity (o) << ow)
Osf surface charge density

Y._ high-frequency conductivity (co>>(D)
T relaxation time

D = (OD1 Debye relaxation time
TL lifetime of charge carriers

.Cm Maxwell relaxation time
p P impulse relaxation time

=_ 3.85 kBT r.
(P electric potential

X electric susceptibility
ii configurational -ctor
(0 circular frequency

C)D Debye frequency
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Electrical Properties of Ice

VICrOR F. PETRENKO

PART I. CONDUCTIVITY AND
DIELECTRIC PERMrITIVrrY OF ICE

INTRODUCTION

A wide variety of the physical properties of materials is generally considered to be their "elec-
trical properties." Among them are dc and ac conductivities, dielectric permittivity, piezoelec-
tricity, electrostriction, photoelectric phenomena, etc. This report is devoted only to conductiv-
ity and electrical polarization of ice in frequency ranges from 0 to 107 Hz. The rest of the phe-
nomena associated with electric fields and electric currents will be considered in f-iture reports
in this series.

We will begin with some elementary definitions and then compare the electrical properties
of ice with those of other materials.

According to the definition of conductivity a

j E (1)

where I is electric current density and E is electric field strength.
Equation 1 expresses the well known Ohm's law for isotropic materials. In the case of an

anisotropic conductor, we have to use the more complicated equation

1i = aij Ej (2)

where oj is a second-rank tensor of conductivity and Ji and E, are components of vectors 7 and
E (Ney 1985). Here in eq 2 and also below we use Einstein's summation convention: when a
letter suffix occurs twice in the same term, summation with respect to that suffix is to be auto-
matically understood. As we will see later, ice Ih demonstrates almost perfect isotropic conduc-
tivity despite its hexagonal symmetry. That is why we will use eq 1 more often than eq 2.

When one kind of electric charge carrier with electric charge q and a concentration of n is
present

J =qn <Vd> (3)

where < Vd> is a mean drift velocity of the charge carriers in the electric field.



If the electric field is not too strong, so that there is no increase in temperature of the conduc-
tor lattice or the charge carriers, the mean drift velocity < Vd> turns out to be a linear function
of the electric field strength E

< =vd E (4)

where the constant of proportionality pa is called mobility. In both electron and ionic conduc-
tors, lg turns out to be constant in a wide range of field strengths, but for different reasons. In
electron conductors (metals and semiconductors), the conduction electrons are moving in a
chaotic motion with very high velocities (= 106 m/s in metals and = 105 m/s in semiconductors
at room temperature). An application of a "weak" electric field barely changes the mean abso-
lute value of the velocity, since the mean drift additions to the velocity are very small. This is
why the average time of relaxation of the electron impulse rp does not change, whether it is
defined by either collisions with the defects of the crystal lattice or by scattering on the phonons.
The mean drift velocity, acquired by electrons in this process between the collisions in the di-
rection of the electric field, is

= Z - p(5)

me

that is

e LP = const (6)
me

as long as Tp and me are independent of E. Comparing the formulas 1, 3 and 4 gives an obvi-
ous result

a = ýql n . (7)

If the charge is transferred by several carriers, moving independently of each other, then their
contributions have to be added together

Ii) =Y, qil pi ni' E (8)
i =1 i =1 i=

where i =1, 2,... K, K being the number of carrier types, and the resultant conductivity a

K

o = X Oi (9)
i=1

comes out to be equal to the sum of the partial conductivities of all the carriers of the charge oi.
In the ionic conductors, mobile ions jump between the closest stable positions in the lattice.

A simple case of one-dimensional motion of an ion is shown in Figure 1. To move one inter-
atomic distance in the direction of the field, the positive ion would need activation energy Urn
-qEa/2, and to move against the field, Um + qEa/2.

The frequency of ion jumps in the direction of the field is expressed by

f=v exp _ Urn- qaE/21 (10)
kBT I

2



Ea] E *o

Figure 1. Potential energy of an ion in a
crystal lattice Was ajfunction of coordinate

__x with (E •0) and without (E = 0) electric
x field E; a is an inieratomic distance.

and against the field

f2 = v expl- Um +qaE/2} (11)
kBT

where v is the frequency of ion oscillations in a potential well (in equilibrium). Since every jump
moves the ion over the distance a, it is apparent that the mean drift velocity of the ion in the
direction of the field becomes

<Vd> =a Vfi -f2) =2v a expnUm/kaTsh qIEa (12)ý2kBT!

since usually

qEa <<2kBT. (13)

We can substitute the argument of sh instead of sh in eq 12

<Vd> =f(q) expAUm/kBTjE. (14)

So, the ion mobility is

A= (vqa2 exp-Um/kBT (15a)
\kBT

and is independent of E. Um usually stands for the movement activation energy.
Also notice that

v exp-Urn/kBT = Vh" (15b)

This represents the probability of jumps or the mean real number of jumps per second. For cha-
otic thermal motion of this kind, the Einstein relation, connecting mobility Vt and the diffusion
coefficient D is also true

3
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7E
"7

-7 J f

I Figure 2. Frequency dependence of

-81 , j , conductivity of pure monocrystal-
0 1 2 3 4 5 6 line ice; aris measured in 072-1 m-1 ,

log If (Hz)] f in Hz; T = -10 "C.

aQ E

Figure 3. Direct current density I
through the same ice sample as for
Figure 2 as afunction of time t; E =

OsE Ofor t < O, E = constfor t ! O; I = E(as
____.I + a, exp{-t1 rDI). The definition of rD

o T Dt will be given below.

D =kBT (16)[q[

In ordinary electronic and ionic conductors, aY is independent of frequency up to very high fre-
quencies (while co << 1, where T is either the time of relaxation or the period of ion vibration).

However, ice behaves in a much different way. A characteristic frequency dependence of
electric conductivity of pure monocrystalline ice at -10*C is shown in Figure 2. The most no-
ticeable thing is that there are two major values of electric conductivity: low-frequency (y, and
high-frequency cr. which differ by three orders of magnitude. Dependent on temperature, the
characteristic frequency of transition 0oD = 2nfD, which is called the Debye frequency and changes
from 105 H1z (O0C) to zero at the low temperature. (At 77 K this frequency is already immeasur-
ablc in pure ice.) One of the outcomes of the frequency dependence in Figure 2 is the unusual
time dependence of the electric current through ice, if a steady electric field is applied to it. This
dependence, created under the same conditions as in Figure 2, is shown in Figure 3.

It is interesting that the temperature dependence of electric conductivities of pure ice (oq and
(Y-) can be closely approximated by exponential dependencies such as

00xp-2kBT)

where the conductivity activation energies Ea are equal to about 1 eV for (Y and 1.16 eV for (Y_
(see the Review of Experimental Results on Ice Conductivity and Dielectric Permittivity section).

Such relationships of electrical conductivities are typical for electron semiconductors. Even
the absolute values of Ea are very close to the value for silicon (1.14 eV at T = 300 K [Long 1968]).

4



Also, the absolute value of .;_ of pure ice at T = 00C is typical for many pure electron semicon-
ductors. One of our first goals will be explaining these observations.

The second major electric characteristic of ice, its polarizability, is also unusual. The stateof
the dielectric medium in the external electric field E is described by a vector of polarization P

P = Pi (18)

where the summation is done over all elementary electric dipoles P, present in a unit volume.
In other words, P is the dipole momentum per unit volume. The following equation is also true

p ,= q i r i (19)

where qi and ri are respectively the charges and coordinates of elementary charges present in a
unit volume. In many cases eq 18 is more useful than eq 19.

In nonferroelectric crystals

P= £oX E (20)

where X is the electric susceptibility of a material and F is the dielectric permittivity of vacuum.
X is the major value determining the ability of a dielectric medium to polarize. More frequently
found in practical use is the relative dielectric permittivity r

C= 1 +X; 5 =EoC Ei (21)

where D is a vector of electric displacement.
Polarization of water is determined by two factors. The first is the large, constant, elemen-

tary dipole of a water molecule. A part of these dipoles is oriented along the external field E,
causing the creation of a sizable polarization. The larger the initial elementary dipole pi and the
higher its concentration in the medium, the larger the value of F that can be achieved.

Secondly, the value ofpi is increased somewhat because of rearrangement of the charges in-
side the H20 molecule. However, for water and ice this is the less significant mechanism for
creating e of the order of 3 only. Figure 4 shows the experimental temperature dependence of

200 1I

0Ice 
Water

120 -

80-
, I I
150 200 T(K) 250 300

Figure 4. Temperature dependence of relative static dielectric permit-
tivity of ice (Johari and Whalley 1981) and water (Malmberg and
Maryott 1956). Extrapolation equations found in these papers were used
to draw the plot. In ice, below - 200 K, a peculiarity called "crossover" may
occur.
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2- ,

. I , I * I i 1

0 1 2 3 4 5 6 Figure5. Frequencydependenceofpure
log [f (Hz)] ice dielectric permittivity at -10 VC.

the static dielectric permittivity E for ice and water around 00 C. The most noticeable fact is that
for ice c - 102, even larger than for water at this temperature. This is, of course, evidence that
even in the "rigid" crystal structure of ice, the H2O molecules (and their pi) have the ability to
turn, like the molecules in a liquid or a gas. The second important fact is that, despite the lower
density of ice (i.e., a smaller concentration of water molecules or elementary dipoles), it has a
larger E value than water. Apparently, this cannot be understood without considering intermo-
lecular interactions. In the dispersion curve E (Fig. 5) for pure ice, obtained under the same con-
ditions as diagrammed in Figure 2, we again notice two values: F, static or low-frequency per-
mittivity and high-frequency permittivity F,.. The transition from E to E occurs again at the
same frequencyf$. E.-=_ 32 is conditioned by electronic and ionic polarization of water molecules,
i.e., small displacements of charges within such a "rigid" body as water molecules. Large static
permittivity E, can be explained only in terms of the water molecule's considerable reorienta-
tion in space.

This short introductory review of the electric properties of ice yields a general idea about what
kind of properties the physical model of ice conductivity should describe. After an introduc-
tion of this model, we will get acquainted in detail with vast experimental results and conduct
an analysis and comparison.

NATURE OF ELECTRIC CHARGE CARRIERS IN ICE

To get acquainted with modem theoretical descriptions of the electrical properties of ice, we
will discuss a question concerning the nature of charge carriers in ice.

Any physical model describing the electrical properties of ice must, first of all, be based upon
knowledge of charge carrier type. One could assume a priori that charge carriers are either con-
duction electrons (holes) or ions (as in water). As suggested by Chesnakov et al. (1987), because
of the fractional electric charge of ions in ice (see the Other Charge Carrier Transfers and Their Ef-
fective Charges section), the latter can accept or return electrons, changing the sign, while stay-
ing charged. So, these peculiar radicals (ions ± electrons) may also be put in the category of
possible charge carriers.

The dispute about the nature of charge carriers in ice (electrons vs protons) has a rather long
history. Back in 1957 Decroly et al. (1957) carried out an experiment that was for a long time
considered to be decisive in proving the proton nature of ice conductivity. The idea of the ex-
periment was simple and elegant. If in ice (as in -- ater) the appearance of charge carriers is caused
by thermoactivated reaction in the bulk

6



2 H 2 0-H 3 O +OH- (22)

then, when an electric current is passing, one would expect hydrogen to be produced at the
cathode

4H 3 0+ + 4e -+ 2H 2 1T + 4H 2 0 (23)

and oxygen to be yielded at the anode

40H- - 4e -- 0 2 1T + 2H 2 0. (24)

According to eq 23 and 24, in the case of ionic conductivity, the passage of every four elec-
trons must be followed by the yielding of two hydrogen molecules and one oxygen molecule.
That is, Faraday's law of electrolysis must be fulfilled. If the amount of generated gas comes out
to be less, then one should seek other charge carriers. Such an experiment using direct current
requires special electrodes to be designed. The problem is that a stable electron exchange be-
tween ice and metal electrodes is usually impossible. Direct current through an ice sample with
metallic electrodes ceases after a short time (the reasons for this will be discussed in detail in
the Charge Exchange at Ice/Metal Interfaces section). That is why Decroly et al. used layers of fro-
zen IIF between ice and metal. Such layers can easily exchange charges with both ice and metal
electrodes. The experiments were carried out at -10°C and it was shown that exactly the same
amount of hydrogen was generated, as follows from eq 23.

On this basis, they concluded that conduction in ice was protonic. This result satisfied the
overwhelming majority of scientists and was not re-examined until 1990 (though it should have
been done in the 1960s). By that time (1960s) the large surface conductivity had come to be widely
known at temperatures above -25°C. This conductivity is conditioned by the presence on ice
surfaces of a so-called quasi-liquid layer. This layer decreases in thickness when the tempera-
ture decreases (starting from -1000 A at 00C), and its contribution to conductivity becomes
negligible at T <-25 to -301C. Besides, if we take into account the extremely great mobility of
fluorine ions in ice reported by Haltenorth and Klinger (1969), we have to agree that the ice
specimens were strongly doped and most of the impurities were being contained at grain bound-
aries and surfaces, thus increasing surface conductivity rather than bulk conductivity.

So, the conclusion of protonic conductivity can be made only with respect to ice surfaces from
the experiments of Decroly et al. Unfortunately, even this inference couldn't be drawn from their
experiments. If the ice specimen were changed to a piece of metal, the same amount of hydro-
gen would be yielded from the I-iF layer, which is a protonic conductor. The experiment of
Decroly et al. proved nothing, although indirect evidence of the protonic conductivity of ice ex-
isted. First, the dc conductivity of heavy ice is about 100 times less than that of ordinary ice
(Engelhardt 1973). Second, it has been established that prc ton injection from Pd electrodes into
the bulk of ice increases its conductivity (Bullemer et al. 1969, Petrenko et al. 1983). Certainly,
these results do not mean that conductivity is entirely determined by proton motion.

Eventually, all doubts were dispersed after Decroly's experiments were repeated using new,
specially designed electrodes that provided a free charge exchange between ice and metal, even
at very low temperatures (Petrenko and Chesnakov 1990a). We w'1l describe in detail the prin-
ciple of action of such electrodes with deposited monomolecular charged layers in the Charge
Exchange at Ice/Metal Interfaces section.

In these experiments, hydrogen and ox) ), - ration in the electrolysis of pure ice was
measured. The dc conductivity of pure ice was entirely determined by proton motion within
the temperatures range of 0 to-42°C (experimental error ± 3%).
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JACCARD'S MODEL OF ELECTRICAL
PROPERTIES OF ICE OF INFINITE SIZE

At present, several theories describing the electrical properties of ice are well known. We will
start getting acquainted with them by looking at Jaccard's (1959, 1964) model, which enjoys a
special place among others, for several reasons. It was the first successful model of ice proper-
ties (both dielectrical and conductivity) and is extraordinarily elegant and clear. It is this model
that is disseminated among ice physicists at the present time.

Protonic charge carriers
Jaccard proceeded from the assumption

that charge carriers in ice are protons. If we
take a look inside an ice lattice (Fig. 6), we
will discover that, for protons to be trans-
ferred at sizable distances (such motion is
necessary for dc flow), they must go through
a succession of jumps, both along hydrogen
bonds and from bond to bond. It is obvious Figure 6. Chain of water
that there is no such opportunity for protons molecules in the ice li, struc-
in a defect-free ice structure. Indeed, any ture. Successive hops of the
hopping along the bond from one molecule proton along the hydrogen
to another will create H3O+ and OH- ions, bonds and between them are

and any jump from one bond to another will forming charge transfer un-

give rise to a pair of Bjerrum defects: L- and der the action of the electric

D-defects. Both H30 and OH- ions and field.

Bjerrum defects will be discussed in another
report (see Foreword).

Since the creation of each pair of such defects requires energy of approximately 1 eV, the
process of proton transfer via the creation of defects by the field turns out to be possible only in
extremely strong electric fields.

E l1 eV 3 x 1010V/m (25)
e a

Actually, in a real situation, the application of an electric field does not give rise to new protonic
charge carriers, but sets in motion the already existing ions and Bjerrum defects. The structure
of hydrogen bonds, along which the protons move, represents itself as a three-dimensional grid.
The transfer along this grid of any of the above four charge carriers reorients water molecules
in such a fashion that the second defect of the same type cannot pass along the same path in
the same direction.

To understand better what happens to water molecules' orientation under ionic and Bjerrum
defect transfer, let us consider the track of an arbitrary charge carrier, a positive ion-H 3O÷ for
instance. When we are speaking about ionic or Bjerrum defect transfer, it is important to keep
in mind that it is just a convention-as a matter of fact, oxygen atoms do not hop from one
molecular site to the next one. Only protons move; plus there is a small redistribution of elec-
tronic density at neighboring molecules, since a proton is a powerful center of attraction for
external valence electrons. Thus, when speaking about H3O motion we have in mind that a
characteristic distribution of three protons near the oxygen atom shifts in space. This is a con-
venient convention.

So, let us make an ion (H30+) track into a straight line for simplicity and follow the reorien-
tation of water molecules as the ion moves from left to right, as shown in Figure 7. Comparison

8



a

H3++

b

1: -
C

Figure 7. Schematic representation of H30÷ ion (a, b) and D-defect (c,
d) motion along a chain of hydrogen bonds in ice. a) Initial arrangement
of H30+ ion and water molecules in the chain before the ion moves from the left
to the right. The arrows indicate successive proton hops (along the bonds) by
means of which the ion moves. b) The chain after the ion has passed. Obviously,
no one H3O+ ion can go along the same chain in the same direction. c) D-defect
motion from left to right along the same chain. The arrows indicate successive
hops of protons from one bond to the next. d) The chain after the D-defect has
passed. Comparison with Figure 7a shows that the motion of D-defect restored
positions of the protons along the chain. It is ready (or "open") now for the
passage of another H30+ ion.

of Figures 7a and 7b leads us to two simple conclusions. First, the ion's ability to jump right or
left is determined by the orientation of the molecules on the left and right of the ion. Let us des-
ignate the concentration of water molecules that enables an ion to jump to the right night and
to the left n1eft. Secondly, ionic motion to the right switches all molecules on the way from night
to nleft. Of course, the reverse holds for motion to the left. These simple observations, as it turns
out, are sufficient to derive equations that describe ion fluxes in ice.

Let us consider the direction of ion motion from left to right as positive, and ice to be com-
posed of tracks such as those shown in Figure 7, which of course is schematic. It is obvious that
total ionic flux to the rightj, will be proportional to 1) the frequency of protons' attempts to jump
along bond vh, 2) ionic concentration n1, 3) the difference between water molecule concentra-
tion (nright-nLft) and 4) the length of jump, i.e., the distance between tvo water molecules roo
(0-0 distance).

j, - n1 (nright- nIeft) vh roo. (26)

In fact, instead of nright and nieft, we should use their ratio to the total concentration of water
molecules, nl2O, which is equal to the probability of finding a molecule in either the night or in
the nieft group.

9



h, n, (nright- fleft)Vh roo/nH 20. (27)

Since, at first, before the current passage

nright a nleft (28)

and the difference between these concentrations is just equal to the difference in the number of
jumps that have already occurred to the left and to the right in a unit volume

nright - nleft = X to the left - to the right (29)
sunc beginning since beginning

of motion of motion

then it is obvious that
t

nright - nleft - f j, (t)dt (30)
r°° 0

where integration is held over t.
In the initial moment of time t = 0, the water molecules had no distinguishing orientation.

For the sake of notation simplicity, let us designate the integral in eq 30 as 12

t
Q(t)=f j, (t)dt . (31)

0

Then, substituting eq 31 and 30 into 27

j, (t)°- n, v, 12(t).

Using vh from eq 15a and 15b, derived for such ion jumps (a = roo, we obtain

j](t) _- n1gl kBTQ(t) (32)
e 1 nH20 ro2

where e1 denotes the effective charge carried by the ions. Since n H20 we get the ultimate
result r3

W = (fl (n, I) (33)•e I

where factor k = O kgT roo. A dimensionless term, 4 cannot be found from such a simple sche-
matic consideration.

This simple analysis reflects most of the significant physical aspects of ion transfer in ice, but
does not take into account the complex, three-dimensional structural topology of the ice crys-
tal lattice. The strict analysis is extremely difficult and time-consuming and has not yet been
carried out. Jaccard was the first to give a theoretical consideration yielding ý in 1959 and again
in 1964. The results obtained by Jaccard (1964) gave

S= 16/ý=3-- 9.238 (34)

regardless of defect types.
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In the previous paper, Jaccard (1959) found that for ion transfer

S= 32/(3n )- 6.16 (35)

and for Bjerrum defects transfer

S= 3 3 - 5.2. (36)

Currently, we prefer to use the results obtained by Hubman (1979a, b) from the analysis of a
large number of experimental data

S= 3.85± 5% . (37)

Careful theoretical treatment conducted by Nagle (1974) showed that the predicted theoretical
anisotropy of the dielectric properties of ice should be of the order of 10-4, if any. As we will
see later, it is the constant 0 that yields the magnitude of the dielectric permittivity, so we will
consider it to be isotropic, i.e., scalar, and extend our particular result (eq 33) to three dimen-
sions.

h1(t) = -ý Me'-G-•(8

where

o = 3.85 k BT rt (39)

and ii, which we will call a configurational vector from now on

H(t) =f jT(t)dt. (40)
0

Thus, we have discovered that ion fluxes (eq 38) in ice depend upon a "prehistory" of ion mo-
tion (eq 40). Let us see what else it leads to.

Electrical properties-one type of charge carrier
What kind of conductivity and dielectric-permittivity properties should ice with one type of

charge carrier (H3O+) ions exhibit?
Let us start with ice behavior in a constant electric field. Let an electric field E = E, be applied

to ice in the initial moment of time t = 0 and the ice be unpolarized at t = 0. Let us find current
density I as a function of time-the total current is a sum of currents caused by the electric field
and special flux from eq 38

J =e 1j,

j =(el E- Q) 0 1; Ol =elpitnj. (41)
2t el

ia =f j,(t)dt; E = Eo
0



The solution of this simple system of equations yields an exponentially decaying current

I (t) = Io exp (- t/tA) (42)

1 /TD 0 €--(43)
e2

J0 = cEO. (44)

Thus, a stable current does not exist in this system. Relaxation time TD is called Debye relaxation
time. As ions shift subject to E, an opposite flux arises, caused by an increasing number of wa-
ter molecules oriented in such a fashion that ion motion against the field is stimulated.

In a state of equilibrium (t = c), these two fluxes cancel each other completely. In a particu-
lar sense, the value Q, a configurational vector, is similar to a force field acting upon ions. The
dielectric properties of ice are determined by rising polarization P

P jXe-i ; R = P = Veij J (45)

dt

where the summation is over all mobile charges. Using eq 42 and initial condition P (0) =0, we
see that

S(t) = (t) dt =J TD1 - D .(6

0

The stationary magnitude of polarization (t = c)

P=71D D12 EzoxE (47)

In an external electric field there also arises polarization that is not associated with ion displace-
ments, but is caused by a redistribution of charges inside the molecule

ýe=oXe E. (48)

The usual time taken to produce such polarization is comparable to a period of internal molecular
vibrations. Hence this polarization is very "fast." The total polarization Pt

Pt Pe + =Eo(Xe+X)E =•XtE. (49)

The entire relative dielectric permittivity of ice is then

rs=l+Xt =1+X+Xe=Eo,+X (50)

where we denote the "fast" part of e, as &-.. This part of the permittivity has no connection to
the motion of defects and it determines the dielectric properties of ice at "high" frequencies when
(0>>1/TD. From eq 50 and 47

(CsSoo) =e,2 /EoO,. (51)

One can easily check that e, - F, is about 102.
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Other charge carrier transfers and their effective charges
Let us look now at what happens when other protonic charge carriers move. First, we should

introduce a particular formalism. Let 1, 2,3,4 represent H30 and OH- ions, and D- and L-de-
fects respectively. Thus e3, for instance, denotes the electric charge of a D-defect and tt2 stands
for OH- ion concentration. Figure 7 shows what happens in a water molecule chain (discussed
above) if an H3-3O ion or D-defect moves along it. As can be seen from this sketch, the effect of
a D-defect is quite opposite to that of an H30 ion. Using the same consideration as in Figure 7,
we can see that the motion of an L-defect causes the same reorientation of hydrogen bonds in a
chain as in the case of H30, while an OH- ion causes the opposite reorientation, all defects
moving in the same direction. Therefore, in the case when all four charge carriers are present,
we should take into account all four fluxes affecting the formation of the configuration vector
•. Keep in mind the sign change mentioned above.

(t) fVI -i2-3+J4 (52)
0

If we introduce ri = (1, -1, -1, 1), i = 1, 2,3,4, then

f _ ij ; at . (53)
0i

Accordingly, the direction of defect fluxes caused by molecular reorientation is different for
different defects. Having conducted the same consideration as in the case of H3O÷ ions, we will
find

j, = (et E - i i) (54)

Equations 53 and 54 express in mathematical terms the fact that a flux of particular defects in
ice is determined not only by the magnitude and the direction of the applied electrical field, but
by the history of motion of all charge carriers as well!

Let us touch on the question of the value of a charge carried by defects. Since H3O÷ and OH-
ions and L- and D-defects are created and annihilated in couples, it is obvious that

el =-e2 and e3= -e4- (55)

If we place an extra "foreign" proton into an otherwise normal ice lattice, we will inevitably
obtain two carriers at once: an H3O ion and a D-defect, as shown in Figure 8. Hence the sum
of those charges equals a proton charge e

el+e 3 = e. (56)

To find out how an elementary proton charge is shared between an ion and a D-defect, we must
consider two circumstances: 1) a fraction of the intermolecular distance that a proton travels, in
case of ions and Bjerrum defect transfer, and 2) displacement of electron density, when a charge
carrier is moving along the chain.

The most strict theoretical analysis of this problem was conducted by Scheiner and Nagle
(1983), who found that

e 3 =(0.36 ± 03)e. (57a)
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I 0-O-"ect

+ P t

' I

+i Figure 8. Creation of two point
defects (H3 0 ion and D-d•fe:t)
when a proton is placed into a

I defect-free ice lattice.

The other way to find el and e3 is experiment. As we have seen (eq 51), the charge of the pre-
dominant defect is incorporated into the formula for c. Using this fact and analysis of experi-
mental data of measurements of e for specially doped ice (in such fashion, that either ions or
Bjerrum defects predominated), Hubman (1979a, b) has found

e 3 =(0.38 ± 0.01)e (57b)

which is also remarkably close to the calculations of Scheiner and Nagle. Other experimental
results for e3 and e1, obtained during recent years, are found later in Table 3. These results are
close to those represented in eq 57a and 57b.

General consideration of Jaccard's model with
four kinds of carriers

Let us now try to find a mathematical description of o and E as functions of frequency for ice
containing all four kinds of charge carriers, with charges el, mobilities gi and concentration ni (i
=1, 2,3,4). We will designate through oi their partial conductivities.

3i =j•e i i ni. (58)

The main condition restricting the universality of this consideration will be a requirement of
uniformity of ice, i.e., the ice has no boundaries (is infinite) and the distribution of charge carri-
ers is uniform

grad ni = 0. (59)

Equation 59 defines the absence of diffusion fluxes of particles and the independence of all func-
tions from coordinates. We will also consider that ice is electrically neutral, i.e., there are no space
charges.

Suppose an oscillating electric field is applied to ice

E = E exp~ioot) (60)

where o = the cyclic frequency wo = 2itf
t = time
i = -

= complex value, as usual.
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The total density of electric current I is the sum of the drift current JId and the displacement
current Id&s

I id, + Idis (61)

Ldis = eoe 4-di. (62)
dt

The drift current results from fluxes of all particles

- 4
Idr, ei ji (63)

i=1

i=(ei E7-r1 i) IL; i= 1,2,3,4 (64)
ei 2

t 4 ( 71i ] i ) ( iTij-)d t . (6 5 )
fi=1

This system of equations (eq 61-65) fully defines our problem for eight unknown functions Idis,

Jdr,' l, , 21, j 2, 13, 4- We will look for solutions for some function f(o), t) as usual in the form

f (0, t) =f (ao))exp{Ri~ot) (66)

where 7(wo) is an amplitude of oscillations o' variable f. Since the system made up of eq 61-65
is linear, after substitution of eq 66 and canceling coefficients exp {iot), we obtain a rather simple
system of algebraic equations. The procedure of finding solutions is routine and we present it
here in ultimate form

J - /O•D(O _Os)
D =(67)

E 1 -i O)TD

E- + -E+ (68)

at

We have introduced new terms

4
o=y oi (69)

i =1

2 2
e 2 /cs= + e3  (70)

01 +02 03 +Y4
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-i Afii +0i 0i 0

TD I D ý0o + DP2 + 23- 041 (71)
e ?e1 e3J ]

From eq 67 and 68 one easily obtains real parts of a and F

0'k(o) = Re [o(W)] as + (0-- Gs) (WtD) 2

1 +(wOt[D)
2

e' (W) = Re [i (0))] = C + E(74)

1 + (O)TD)
2

We are most interested, of course, in analysis of eq 7 3 and 74, describing the real parts of a and
F. Now we will proceed to this analysis.

Analysis of Jaccard's results
Despite the complicated form of Lq 73 and 74 at first glance, they have very simple

asymptotics, namely

a

1/(oo.o- CYs) 
(S E

b

1/(Ys 1/0"T

%E_; E°9- • Figure 9. Ice sample connected into

measuring circuit (a) and its elect<ri-

c d cal equivalent circuits (b-d).
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lim a' (a)) = 0,; lim o' ((0) = o0 ; (75)
(0-=+0; (0--40;

lir x " E(0N) = Es; lir mE, (0)) = E_; (76)

Plots of the functions a'(co) and e'(w) are depicted in Figures 2 and 5; solid lines are drawn for
the values of parameters: TD = 5.06 x 10-5 s, a3• = 1.9 x 10-5 Q-1 m-1, a, = 3 x 10-8 0-1 m-1,

_• = 3.16, Eý = 100.8.
The transition from low-frequency (s) to high-frequency (-) values occurs in the vicinity of

the Debye frequencyfD = coD/2n = 1/2 9 TD a 3.14 kHz (Fig. 2 and 5).
For clarity we can devise an equivalent circuit having the same frequency response as a cube

of ice with sides of I m (Fig. 9).
If we take a look at eq 69, we see that high-frequency conductivity a-3 is determined by the

greatest partial conductivity among a3. Usually, it is a 4 in pure ice for T > -50° C, i.e., conduc-
tivity of L-defects. The fact that a- incorporates all ai in an additive fashion implies that at high
frequencies (t0>>wD'D) charge carriers move independently of each other. One can imagine this
situation as a parallel connection, as shown in Figure 10a. At frequencies much smaller than coD
and for direct currents, reverse values of conductivities rather than conductivities are summed
up (eq 70) for ions a1 + a2 and Bjerrum defects a 3 + (Y4. This is common to series circuits, as shown
in Figure 10b. Such conductivity as is controlled by the smaller of two conductivities: ionic (aion
= (Y1 + (52 or Bjerrum defects OB = (T3 + (34. In pure ice at relatively high temperatures
(T < - 50 C), it is ionic conductivity. The character of as is attributable to the fact that in the case
of dc conductivity, carriers' fluxes must be stationary. Since E is constant, then 0 also must be
constant, as can be seen from eq 64. This is possible only under conditions of

Jl -J2 -3 +J4 = 0 (77)

from which (noting that lion = el [J -J21 and lB = e3 U3 -j4]) we obtain

hion = IB (78)
e1  e3

i.e., ionic and Bjerrum defect currents are approximately the same. Under this condition (eq 78)
all hydrogen bonds restore the initial position from time to time. As we have seen, if an ionic
current "locks" chains of hydrogen bonds, then a Bjerrum defect current "unlocks" them, and
vice versa. Using an equivalent electrical circuit in ice, shown in Figure 9b, we can easily obtain
a time dependence of current through the ice specimen when a rectangular voltage pulse is
applied (E = 0 when t < 0; E = constant when t > 0), portrayed in Figure 3. Of course, we could
obtain the same dependence from the system of made up eq 61-65 at given initial conditions.
In the Relaxation Times of Electric Polarization and Electric Fields in Ice section, we also will con-
sider effect of boundary conditions on the electric relaxation in ice.

Let us analyze now how we can account for a large, static dielectric permittivity of ice rs. In
Jaccard's model, dipole moments of water molecules do not appear! This is an advantage since
the concept of molecular dipole moments in ice has proven to be a complicated issue (Nagle
1979).

The polarization P is defined in terms of the spatial displacements of charge carriers, as can
be seen from eq 45. Large electrical polarization arises during a time interval of aboi t TD after
an electric field has been applied and is determined by displacements of the majority charge
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a

(el/ e)2/01 (e3/6)12/003 Figure 10. Equivalent electrical cir-

cuit for high-frequency conductiv-
(el/e)2 /02 (%/0)2/04 ity a, (a) and for static or lowv-

b frequency conductivity a, (b).

carriers (usually Bjerrum defects) under the action of the electric field. This displacement grows
until a force resulting from ! balances the electric field force. The balance is achieved within a
characteristic time interval rD, which, as can be seen from eq 71, is also defined in terms of con-
ductivity of majority charge carriers. It is interesting to compare TD with the well-known Max-
well relaxation rM, which is the case when the only restoring force is the electric field originat-
ing from electrical charges building up

"XM = Eo0 •-/ba. (79)

At T = - 100 C, %M comes out to be about 30 times smaller than TD! In other words, H is not such
an efficient restoring force. It is useful to estimate an average displacement of majority charge
carriers <x>, building up the polarization of ice

P =EoXE =e4 <x> n4  (80)

<x> = Co (E,- 1) -(81)
en4

For typical values of E - 102 V m-1 and n4 - 1021 m-3 (-100C), we obtain

<x> - 1079 m = 10 A (82)

i.e., <x> is quite microscopic. Notice also that <x> << n4-1/ 3 = 10-7 m is the average distance
between L-defects. Hence, we see that the defects move independently.

In the conclusion of this section, we will derive formulas for so-called Cole-Cote diagrams
(Cole and Cole 1941), which are frequently used for experimental data analysis. From eq 68

r(() = "(+ i C" (0) (83)

where e'(o) is given by eq 74 and

E" (0 TD- (84)
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It is easy to verify that e' and F" are connected by the relationship

t-(2e)] +(" 2 
-(

which can be represented graphically as a semicircle, portrayed in Figure 11.
If experimental data closely fit the Cole-Cole diagram, it is strong evidence in favor of an

existing relaxation process with only one relaxation time.

(D= 1/'•D

2 Figure 11. Cole-Cole diagram.

ELECTRICAL PROPERTIES OF ICE OF FINITE SIZE

In previous paragraphs, we have conducted a theoretical treatment of the electrical proper-
ties of ice that has no boundaries and is absolutely uniform. In practice, this is an unattainable
ideal, and attempts to compare such a "uniform" theory with experimental results can raise
doubts about the credibility of this theory, although this theory plays no role in that.

For electrical measurements to be carried out, ice specimens must be put into particular elec-
trical circuits. This cannot be done without creating some kinds of interfaces, such as ice/dielec-
tric, ice/metal, ice/semiconductor, ice/protonic conductor or even ice/plasma. The presence
of these interfaces causes considerable change in the simple dispersions a(cO) and E(c0), depicted
in Figures 2 and 5. However, as we will see later, extra dispersions appearing in these experi-
ments allow us to determine the concentrations and mobilities of numerous charge carriers in
ice. In practice, it turns out to be extremely difficult to accomplish an efficient electric charge
exchange between metallic electrodes (which are electronic conductors) and ice, which, as men-
tioned above, is a protonic conductor. Ways to achieve such an exchange will be discussed later.

It is much easier to suppress such an exchange completely, by placing a thin dielectric film
between ice and electrode. The thinner the film, the smaller its contribution to measurements.
A thin oxidized layer of A120 3, i.e., sapphire, at the surface of an Al electrode, or SiO2 at the
surface of a silicon electrode, can successfully play the role of such a thin film. These electrodes
are called perfectly blocking, and the electrical properties of ice with such electrodes were theo-
retically, exhaustively considered by Petrenko and Ryzhkin (1984a).

Experimentally, e'(o) is determined from the capacitance C(o)) of the capacitor in which the
ice specimen to be investigated acts as a dielectric

E" ()-L C (co) (86)
e0s
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where we consider a rectangular ice specimen of length L, directed along the x coordinate and
cross section s. Two perfectly blocking electrodes have the same area s and are located at x = 0
and x = L. The problem of finding O'(o) is then reduced to finding C(o) for a plane capacitor.
Let us suppose that an ice specimen has ideal blocking electrodes that are connected to an ac
circuit so that a surface density of electric charge on the blocking electrodes varies with time
according to the harmonic law oexp{-iwot}. We can describe this charge as a function of time t
and coordinate x as

pO(x,t) 8 (x)- 6(x-L); o.c exp(-iw t} (87)

where 8(x) is a delta function and oY, is an amplitude of the surface charge on the electrodes.
From the capacitance determination

C (o) = Re [sosc/A 9 (0]) (88)

where Ayp(o) is the amplitude of the potential difference.

Aq (t) = .,p (w)exp ,-i(Rt . (89)

Now, to find Aqo) we have to write a closed system of equations for all the quantities connected
with the electric field in ice. There are ten such quantities: E(x,t) and Q2(x,t) are, respectively, the
projections of the electric field strength and the configuration vector onto the x-axis; n1i(x,) are
the concentrations of the defects (i = 1, 2, 3, 4), and ji(x,t) are the projections of the densities of
the defect fluxes onto the x-axis. This problem is different from the one considered above in two
ways. First, by the presence of a space charge, we have to add the Poisson equation

aE 4

CO C_ ei Ani +po(x,t) (90)

where Ani = (ni - nio), ni/ being the original concentrations of the defects when E = 0.
The second difference from the homogeneous problem is the appearance of diffusion terms

in the equations for the defect fluxes

Ji = (e; E-9iil) SL - Di a (At/i (i = 1, 2, 3,4). (91)~i 2 a~x

Adding four continuity equati.,'I:

+ 0 , i = 1, .. 4 (92)
at ax

and an equation for the configuration vector, we obtain
4

Y, _ 4 ji- (93)
at i=1

Thus, we get the closed system of ten equations (eq 90-93). This system can be solved in a lin-
ear approximation when I ejAlp I << kBT, when we can substitute ai in the two equations (eq 91)
by making 0 io, = constant. In this case, by employing the Fourier transform in x, we shall switch
over to a system of algebraic equations that are easily solvable. We are not going to frighten the

20



reader with this procedure-we will only show the results obtained in that way. The case of
I e-iAp I >> kBT will be analyzed below in the Field Effect Transistor Made of Ice section.

Low-frequency limit-screening lengths
With " an electric field inside the ice specimen is distributed in accordance with the pres-

ence of two screening lengths, 1 / 1c and 1/K2

E(x) = 5-_ [ (exp-lx + exp-Kl(L-x)) + I (exp"2x + exp-2(L-x))] (94)

In the case when Bjerrum defects are majority charge carriers

e2 E (n3o + n 4o1/1 2 ; e2o(n1 + n - 1/2  e2
K1.= 3 _0 K2 E 2)ES= 3  (95)[ to~kB T e2 [o e0 8 e.

Figure 12 shows the electric field E inside the ice specimen. At the screening length KI1, which
is determined by the concentration of majority carriers (n30 + n40) and coincides with the well-
known expression for the Debye screening length i<-1, the field drops down from the original
value asc/e.&* to oYc/coEs. As we have seen, e - 102, i. e., icK1 is a characteristic length at which
E attains a steady-state value. At large x the field drops down to zero because of screening by
minority charge carriers, i.e., ions with a larger characteristic screening length K2

1 determined
by ion concentrations (n10 + n20).

Figure 13 shows an "apparent" static (o>-40) dielectric permittivity of ice E" as a function of a
specimen length L. First of all, notice that the only value of the permittivity for ice of thickness
L << K is E, so that the Debye dispersion (Fig. 5) disappears. Notice also that, using experi-
mental dependence e'(0, L), we can determine K1 and K2, i.e., (n10 + n20) and (n30 + n40).

Ignoring the dependence of E on sample thickness L can result in significant errors when c is

measured at low temperatures for which -1c and L are comparable. Since within surface layers

El

E

E21-

0 K--A --x -- ,- L

a. Only Bjerrum defects are taken into account.

E,

E

E2L
0 K-1  -21 -X -x- L Figure 12. Distribution ofstaticelectricfield E

inside the ice sample; E1 = aa/eoe**, E2 = arsf,4/;
b. Bjerrum defects and ions are considered. (after Petrenko and Ryzhkin 1984a).
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Figure 13. Dependence ofa,, ..rent static
dielectric permittivity e'on ice thickness
L. L-defects and H3O+ ions attend (after

2-L----a Petrenko and Ryzhkin 19S4a).

I I

Figure 14. Dependence of apparent static dielectric permittivity E"
on circular frequency o. L-defects and H3O+ ions attend (after Petrenko
and Ryzhkin 1984a).

of thickness )c11 the permittivity is e5/,. times smaller than in the bulk, it is necessary to take

the dependence of e from L into account for L < es/e- <-1 - (0.5-1.0) mmn at T = 150 K. How-
ever, that was a typical sample thickness used by many researchers to determine the critical
temperature T, in the Curie-Veiss law

Es OC 1 (96)
T-Tc

Ignoring %(L) dependence could also be responsible for wide scattering of the experimental
value of Tc (see the Review of Experimental Results on Ice Conductivity and Dielectric Permittivity
section).

Frequency dependence of dielectric permittivity
As was shown theoretically by Petrenko and Ryzhkin (1984a), on ice/dielectric boundaries

new dispersion "steps" appeared on the e'(wo) plot. While the main Debye dispersion occurs at
coD = 1 /TD, where TD is a characteristic time of relaxation of majority charge carriers, three other
characteristic frequencies correspond to relaxation times ;i for three other types of charge car-
riers. In the paper referred to, an explicit solution was found for two types of charge carriers
(for instance, L-defects and H3O+ ions). The frequency dependence for this case is shown in
Figure 14, with some changes. The characteristic parameters indicated on Figure 14 are

cal = D 4 1c2
2, (3 = *(aI/e2 + 1 4 /e2) (97)
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[- 1-exp-KiL -

E2= +_ e's + (98)

=•1-exp-rL +E- 1-exp-Ll-1 99)

Notice that the four equations above contain only four unknown quantities, namely, D1, D4, n 1
and n4, since K1 , K2, a, and a4 are the functions of these variables. Therefore, we are able to de-
termine all of them from an experimental curve e(ca). Owing to the Einstein relation between
Di and pi (= I ei I Di/krT), we find V, as well. This method was used by Zaretskii et al. (1987a)
and Zaretskii (1991) to determine the mobilities of L-defects and of H3O+ ions.

CONCENTRATION OF CHARGE CARRIERS

So far, we have discussed conductivity provided by protonic defect motion in ice (ions and
Bjerrum defects), unrelated to how such charge carriers can appear in ice. In fact, three sources
of protonic charge carriers in ice are known. Two of those exist in a state of thermal equilibrium.
They are, first, thermal generation of carriers, and second, atoms and molecules of impurities.
The third source is various types of external excitation, such as strong electric fields, ultraviolet
radiation or high-energy particle beams. We will begin our discussion of charge carrier concen-
tration with a consideration of pure ice in a state of thermal equilibrium.

Intrinsic charge carriers
Mobile defects of a protonic subsystem in ice can be created by thermal fluctuations in a crystal

lattice. As in the majority of solid materials (excluding some solid gases with extremely weak
van der Waals bonds), the typical energy required for an intrinsic point defect pair to be cre-
ated is about 1 eV. As we will see later, the activation energy in ice is about 1 eV for H3O+ and
OH- ions and about 0.68 eV is required for the creation of L- and D-defects. These values largely
exceed the average energy of thermal vibration, kBT - 0.023 eV (-10QC), and by primary inspec-
tion, the appearance of a large number of these defects is unjustified. However, it is common
knowledge that the state of thermal equilibrium at constant temperature and volume is attained
at a minimum of free energy F rather than at a minimum of internal energy U.

F=U-T. S. (100)

The appearance of defects increases internal energy U, of course, but owing to an increase in
entropy S, the equilibrium is attained at some finite value of point defects concentration.

We can illustrate this point with a simple model example. Let us consider a crystal lattice
consisting of N identical points (atoms, molecules or elementary cells). A point defect with ac-
tivation energy E, could appear at any of the points with equal probability. Then, the part of
free energy ascribable to the appearance of defects will equal

Fd = E, n - TS c (101)

where Sc in turn is the configurational entropy of defects in the lattice

Sc=kBlnW (102)
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and W is the number of arrangements of n identical defects over these N identical sites

W - N! (103)n! (N- n)!
At equilibrium

aFd = 0. (104)
Dn

Substituting eq 101-103 into 104 and using the Stirling formula

In( N In N-N (N>>1)

we obtain

n -=exp{- E-T (105)N-n k3

Assuming Eo >> kBT, N >> n, we get

n a N exp(- ETj (106)

To be more precise, the appearance of a point defect not only changes the configurational en-
tropy, but also affects the vibrational entropy because of a slight change in the elastic lattice vi-
bration spectrum. This vibrational entropy change -Sv would lead to an additional factor of
exp(Sv/kB} in eq 106, but as Sv is so small the factor is very close to unity and so will be omit-
ted below.

Since the number of possible protonic configurations in ice is rather large, the calculation of
SC in ice is more complicated than in the above example. For ice with ionic defects, such a cal-
culation was conducted by Ryzhkin (1985). Considering ice with ions, he first noticed that each
water molecule could be in one of fourteen states: six orientations of neutral water molecules
that correspond to the possible placement of two dose protons at four hydrogen bonds (4! /2!2!
= 6); four orientations of OH- ions and four orientations of the H3O+ ion. Let the number of
molecules in these states equal Ni (i = 1, 2,...14); then the full number of arrangements of N
molecules over these states equals

14
N! /l Ni! . (107)

i=l

Among that number there are "right" configurations with one proton on each bond and "wrong"
ones with two protons or without any protons. The probability of finding a right bond equals
1/2. Therefore, for the number of right configurations, we obtain

14
W =(1/2)2'N r!/I- Ni! (108)

i=1

where 2N is the number of bonds. In an isotropic case we have

N, =N 2 ... =N 6 =(N-2ni)/6; N7 =N 8 ... =N 14 =ni/4 (109)
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where ni is the number of H3O or OH- ions (the concentrations are equal in undoped ice when
a space charge is absent ).

The entropy of the ice with ions equals

Lc -hnW = -2n i In(ýLi) -(N -2ni) In [2(N-2n.) (110)
kB N3

This coincides with Pauling's (1935) result W = N 31 2 when ni --> 0, i.e., in defect-free ice. Mini-
mizing F with the entropy given by eq 110, we obtain for the equilibrium concentration of ions

ni _ 2exp ! Ei (111)

N-2ni 3 2kBT

and since Eai>> 2kBT

ni - Z N expi- Eau 1 (112)
3 1 2kTI

As we can see, the specific structure of ice manifested itself only in appearance in eq 106 of a
factor of 2/3 before the exponent. The factor 1/2 is in the exponent because ions exist in pairs.

A general case of the presence of ions and Bjerrum defects was considered also by Ryzhkin
(1985, unpublished). Let us denote D-defect concentration as nD, and the concentration of L-
defects as nL. If D- and L-defects are formed by thermal fluctuations, i.e., in pairs, then obvi-
ously

no = nL (113)

Using a similar way as we have seen above, Ryzhkin found that in the presence of both types
of defects

S/(kBN) = -2 x in (x) - (1-2 x) In (2 (1-2 x)/3)

- 4 y Iin (2 y) - 2 (1-2 y) In (1-2 y) (114)

where

x = ni IN and y = nD/N. (115)

Minimizing a free energy of ice with the entropy from eq 114, we obtain for Bjerrum defect con-

centration

nD= nL = N exp (-EaB/2 kBT). (116)

Do superionic transitions and the superionic state of ice exist?
While deriving formulas, accounting for H30 and OH- ion concentration (eq 111 and 112)

and Bjerrum defect concentration (eq 115 and 116), we considered activation energies Eai and
EaB to be constants. In 1985, Ryzhkin noticed that this is not always the case. In particular, in
the case of large defect concentrations, the activation energy is no longer independent of defect
concentration that results in a phase transition under certain conditions. The main idea under-
lying Ryzhkin's theory is that the energy of formation of the defect pair, ions H3O÷ and OH,
for instance, can be split into two parts.

25



600 1 I 1 1

0

-2
400-

CT

Z --4- T

o6

-8 - 200

-10F

1 2 3 4 5 0.2 0.4 0.6
1000/T(K) E I/E2

Figure 15. Logarithm of the ratio of ion concentra- Figure 16. Temperature of transition of ice into
tion n to molecular concentration N as ajfunction of superionic state Tcas afunction ofE1/E 2 (af-
reciprocal temperature T. The steep rises correspond to ter Ryzhkin 1985).
transition into the superionic state of ice. The upper curve
is for E1/E 2 = 0.26, the lower curve for E1/E 2 = 0.58
(after Ryzhkin 1985).

Ea =Ej +E 2 (n) (117)

where E1 is the energy of forming an ion pair at distance ro, i.e., at two neighboring water
molecules. In other words, E1 is the energy required for the proton to be moved along the hy-
drogen bond from one neutral water molecule to another neutral one. E2(n) is the energy equal
to the work of separation of formed ion pairs. This part of the activation energy can be damp-
ened drastically because of the screening effect. (Ions are screened electrostatically by other
mobile charge carriers.) In fact, this must result in a kind of "chain reaction": increasing ion
concentration (by means of gradually increasing temperature) will lower E2(n) and hence the
entire E, which in turn causes an increase in n and a decrease in Ea. This relationship of Ea and
n becomes essential only when the concentration reaches some critical value, which is followed
by an Ea jump and an increase of n by orders of magnitude (see Fig. 15). Unfortunately, it is
extremely difficult to calculate the value of E2 precisely, because of the uncertain value of di-
electric permittivity E_ at distances about interatomic distance. That is why Ryzhkin assumed
that 15 e- 5 3.2, i.e., it lies between values of e for vacuum and average macroscopic value. The
result of this uncertainty of F is that the theory can predict only qualitative dependence of criti-
cal temperature as a function of ratio El / E2, as shown in Figure 16. Since the transition indi-
cated above does not occur at T = 273 K, this implies that Eu/E2 > 026 and F > 253.

The sharp change in concentration, indicated in Figure 15, can be interpreted as a transition
into the superionic state, since ion concentration reaches = 0.1 - 1, i.e., it becomes comparable
with molecular concentration. Of course, in this case the ice structure itself can experience quali-
tative changes, resulting in a disordering of the oxygen system (quasi-liquid state).

Naturally, all considerations presented by Ryzhkin for ions also hold for Bjerrum defects.
Under usual conditions the superionic transformation predicted by Ryzhldn does not occur up
to ice melting temperature. However, this effect could be significant on the ice surface or in the
vicinity of the dislocation core, where charge carrier concentration can exceed the bulk concen-
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tration by several orders of magnitude, because of the presence of strong electric fields and elastic
strain fields (Ossipyan and Petrenko 1988, Ryzhkin 1992).

Protonic charge carriers introduced by doping
Although liquid water is a very good solvent for many substances, its solid phase-ice--

dissolves to almost nothing. Most of the impurities dissolved in water either get repelled from
ice back into the w .ter or precipitate as a second phase inside the ice bulk, in the form of segre-
gations and dusters during the process of ice growth. There are some exceptions, such as a few
acids (I-IF, HC1), ammonia (NH3), some alkalies (KOH, NaOH) and their derivatives like NH4F
or KC1. These substances, first, can be included properly into the ice crystal lattice and, second,
they drastically change the protonic carrier concentration in the ice.

To understand how these impurities affect the electrical properties of ice, let us consider
probable patterns of their incorporation into the ice lattice (see Fig. 17). Note that although there
now exist a number of experimental techniques for investigating real atomic structure, which
allow us to obtain atomic resolution (transmission electron microscopy of high resolution, scan-
ning tunneling microscopy, atomic force microscopy), the real structure of such defects in ice
has not been studied yet. Patterns such as those represented in Figure 17 turn out to be just
hypotheses (assumptions) based upon ionic radii analysis, as well as analysis of energies and
lengths of atomic bonds, etc. The ionic radius of F-, for example, is rather dose to that of 0-2,
and it is natural to assume that fluorine substitutes for oxygen successfully in an ice lattice. As
can be seen from Figure 17a, since the I-IF molecule can provide only one proton for the four
nearest hydrogen bonds, one bond appears to be lacking any protons at all, i.e., substitution of

a. HF. Top: Ice lattice with
incorporatedHF molecule. Bot-

tom: The same after H30+ ion
and L-defect were released by

H30+ ) means of sequential hops of pro-
tons (along the hydrogen bonds
to release H30+ ion and between
the bonds to release L-defect).

Figure 17. Incorporation of impurities into the ice lattice.
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HD b. NH3 . Top: NH3 molecule
incorporated into ice structure.
Bottom: The same after release of
OH- ion and D-defect from the
NH3 molecule.

c. KOH. Top: Diagram to indi-
cate how KOH dissolved in ice
is thought to introducedefects.
The K÷ ion is interstitial, and the
OH- ion -substitutes for a water
molecule leaving one bond with-
out any proton-an L-defect.
Bottom: The same after L-defect
and OH- ion have gone off the
KOH molecule.

Figure 17 (cont'd). Incorporation of impurities into the ice lattice.
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the water molecule by the HF molecule results in the appearance of an L-defect associated with

the impurity molecule. The binding energy of such an L-defect with the HF molecule obviously
is not large (•: 10-2 eV, Jaccard 1959, Camplin et al. 1978). Since the number of possible arrange-
ments of the L.-defect in an ice lattice is enormous, practically all L-defects leave their parent
molecules.

Moreover, it turns out that a single proton in the HF molecule is not bound firmly and can
"jump over" along a hydrogen bond to another water molecule, because of the thermoactivation
process, turning the water molecule into an H30' ion. It is important to emphasize the chemis-
try of HF. To a physicist the natural thing would be for an extra proton to attach to HF forming
an OH- ion, but chemically HF is a weak acid in water and prefers to lose a proton.

Thus, HF doping of ice increases the L-defect and H30 ion concentrations and lowers D-
defect and OH- ion concentrations. The latter occurs because the equilibrium concentrations of
D-defects and OH- ions in pure ice are dettrmined by a balance between the rate of their

thermoactivated production and the rate of recombination: D- with L-deft, cts and H30 with
OH- ions. HF doping increases L-defect and H3O+ ion concentrations, so that the rate of
recombination increases, which results in decreasing D-defect and OH- ion concentrations.
Algebraically, this can be described in terms of the products of concentrations
n In2 and n3 -n4 being constant in a state of thermal equilibrium, irrespective of doping

n1 . n2 =(ni)2 = 4NN2expi Eai i ni<<N (118)
9 kBTJ

n3 - n4 = (nD)2 = N 2 exp EaB nD<<N . (119)SkBT

Another molecule that can successfully be incorporated into the ice lattice, substituting for
water molecules, is ammonia, NH3 (Fig. 17b). Since NH 3 donates three protons (instead of two
as in the case of H20) for four hydrogen bonds, we observe two protons at onr- bond at the same
time, i.e., the D-defect. As a consequence of the thermoactivation pro-ess, this defect can be re-
leased and take part in the conductivity process. Besides, the NH3 molecule can accept a fourth
proton, forming an OH- ion at a neighboring water molecule. As will be shown later, activa-

tion energies for the release of D-defects and OH- ions from the NI 13 m !- -ule in ice are quite
sizable. Therefore, although NH3 doping of ice increases D-defect and OH- ion concentrations
(decreasing L-defect and H30 ion concentrations in accordance with eq 118-119), its influence
in terms of conductivity is not as efficient as the HF doping of ice. It is also important that NH 3

doping increase the concentration of less mobile carriers (D-defects and OH- ions), as will be
shown in the Review of Experimental Results on Ice Conductivity and Dielectric Permittivity section.

Lastly, the third, very important kind of impurity that considerably affects the conductivity
of ice is alkali hydroxides, among which the most significant is KOH. The most plausible mecha-
nism of incorporation of KOH into the ice structure is shown in Figure 17c. The potassium atom
is accommodated in interstices, while the hydroxyl group OH is built into the lattice. As can be
seen from Figure 17c, this results in the appearance of L-defects and OH- ions linked to KOH
impurity. Because of thermoactivation processes, they can be released into the ice bulk, increas-
ing L-defect and OH- ion concentrations and suppressing D-defects and H30' ions. Because

of the extremely small binding energies of L-defects and OH- ions with KOH molecules in ice,
these impurities become efficient donors of L-defects and OH- ions even at very low tempera-
tures (see the Review of Experimental Results on Ice Conductiviti/ and Dielectric Permittivity serf-ion).

Let us briefly discuss the question concerning the statistics of charge carriers in do Ad ice.
This problem has been treated many times in scientific literature (see Jaccard 1959, Krbger 1974,

Camplin et al. 1978). Unfortunately, in all instances known so far, this consideration was based
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upon the law of mass action, the specifics of ice being disregarded, which can yield only ap-
proximate results. The dependence of defect concentrations on doping impurity concentrations
in ice was considered in the greatest detail by Kr6ger (1974). We will give below an example of
such an analysis conducted for ice doped with HF. Substitution of water molecules by HF mol-
ecules generally brings into existence the following kinds of defects:

1. HF itself in lattice points. We denote their concentration as nHFL. The sequence of let-
ters HFL implies that the proton (H) and L-defect (L) are still bound with fluorine.

2. HF without the L-defect- nHF.
3. HF without a proton: nFL.
4. HF without the L-defect and a proton: nF.
5. H3O+ ion: nH30+.

6. OH- ion: nOH-.
7. L-defect nL.
8. D-defect. nD

For these eight unknown variables to be found, eight equations are required. Three of those are
evident

NHF = nHFL + nfF+ + +nF

where NHF denotes total concentration of impurity molecules HF.
The next equation implies that H3O+ ions are formed either coupled with OH- ions from

neutral water molecules, or when a proton is released from the HF molecule

nH30+ = nOH- + nF + nFL. (120)

In the same fashion, L-defects can appear either coupled with D-defects from a pair of nor-
mal hydrogen bonds, or can be released from the HF molecule. Therefore

nL =nD + nF . (121)

The rest of the five equations will arise from the law of mass action being applied to revers-
ible reactions, resulting in the appearance of charge carriers. So, from the reaction

HF +H 2 0O=• F- +H 3 0++ L

it follows that

nH 30+ nF" nL = K0 1  exp(-WOI/kuT) (122)
nHFL

where KI1 is the dissociation constant of this reaction and WoI is the activation energy. Let us
write down equations for the other four reactions

(nlH3O+. nFL) /nHFL = KIF - exp(-WIF/kBT) (123)

(nHF nL)/nHFL = KOF - exp(-WOF/keT) (124)

(nF nL)/nFL = KI,O - exp(-WIOI/kBT) (125)
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(nF* nH 30')/nHF=KO,I exp(-Woj/kBT). (126)

If the dissociation constants are known, then all concentrations can be found. And, if activation
energies are known in addition, then the temperature dependence of all concentrations can be
predicted. Of course, even though this is an empirical (rather than a strictly theoretical) consid-
eration, the actual calculations are rather cumbersome. Sometimes it is better to simplify the
consideration, essentially taking into account, for instance, that the dissociation energy of the
L-defect released from the HF molecule is extremely small, and hence fluorine atoms cannot
keep back the L-defects

nF = NHF + nD • (127)

If in addition NHF concentration is much greater than the intrinsic equilibrium concentration
of Bjerrum defects, then

nL a-- NHF- (128)

In this particular case, finding H3O ion concentration will also be simplified, since

nHF- NHF- nH 30+, nF -- nH 3 0+ (129)

Then, from eq 126

nH30+ = -K0,I ± (Ko,12+4NHF" K 0, O,1/2] (130)

where we must take the + sign.
At high temperatures or low concentrations of HF

Ko,I>>NHF (131)

and

nH30+ - N -F. (132)

At low temperatures or high concentrations of HF

K 0 ,1 < < N HF (133)

and

nH30+ =-[K0 ,1 • NHF] 2 . (134)

EXPERIMENTAL TECHNIQUES FOR INVESTIGATION OF
CONDUCTIVITY AND DIELECTRIC PERMITTIVITY OF ICE

Measurements of the electrical properties of ice can provide useful information, not only in
respect to the cy and e of ice, but about impurities and even the age of ice as well. In addition,
since the same defects (protonic charge carriers) are responsible for both electrical and mechani-
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Guardling Rin Elactrode

Ice

Null Indicator

Oscillator

Figure 18. Schematic sketch of ac bridge circuit to measure ac
impedance of ice sample, Z = R÷ iAwC.

cal properties (plasticity, anelastic relaxation time), electrical measurements in ice appear to be
of use to diverse scientists working on this important material. Therefore, it is necessary to get
an idea of basic experimental techniques applied in investigations of a and e.

Measuring circuits
The most common measuring circuit for electrical measurements in ice is the ac bridge, shown

schematically in Figure 18. Its operational principle is dear from the sketch. The bridge is ad-
justed unti the minimal readings of the null indicator are observed. The ac bridges actually used
are both privately made and industry manufactured. A proper selective amplifier or even a lock-
in amplifier can play the role of null detector. Such circuits are known to be used in the frequency
range from 10-2 up to 107 Hz. However, the use of ac bridges at frequenciesf Z 1 Hz encoun-
ters considerable difficulties. As a rule, this circuit is employed in the frequency range 1-106 Hz.
With the aid of an ac bridge, the equivalent electrical resistance R•) and capacitance C(t) (con-
sidered to be in parallel) of ice is measured at a fixed frequency. Transformation of R(/) and C(f)
into a(t) and E(J) is not difficult

W L ; (f)= L C ( (135)
sR(f) se
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OSclOSCOPe Figure 19. Schematic representation

of"loop-method"for ice ac impedance
measurement.

where L and s are specimen thickness and surface area.
Another extensively used ciruit is represented in Figure 19. This is the so-called loop method.

An XY recorder can be used as an "oscilloscope" in the low-frequency range (f< 1 Hz). The
circuit has proven itself to good advantage in the frequency range of 10 -4 to 107 Hz.

It can be easily shown that

R(f)=ROVoIV V2, C(f)=Y 1- (136)
V0 2x/fRO

where V0 is the amplitude of the oscillator voltage. From here a and e can be evaluated using
eq 135. It is necessary for measuring resistance that Ro be much smaller than ice impedance over
all frequency ranges used in the measurements.

The third technique is based upon measurement of current passing through the sample as a
function of time 1(t), after a rectangular voltage has been applied. So that

V(t) = 0, t < 0 (137)
IV0 = EL, ta 0

In that case, when the electrodes used ensure an efficient charge exchange with ice (a space
charge built up in ice is absent near the electrodes), a dependence 1(t), shown in Figure 3, is
observed. As can be seen from this figure, oy- and as are determined by the initial and final (t
>>»D) values of the current respectively. The high-frequency capacity of a specimen C,. = sF../
L defines a short time pulse of the current (not shown on Fig. 3) with characteristic decay time,
S= C.. Rm, where Rm is the resistance of the measuring circuit.
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Static dielectric permittivity can easily be found from the relationship

E E= f (-()dt. (138)
sV

0

All three methods can be easily computerized, provided that digital storage oscilloscopes and
lock-in amplifiers operated by computers are used.

Electrodes
The fabrication of proper electrodes for ice encounters great difficulties, since all metals are

electronic conductors, while ice is a protoric conductor. In many cases the use of improper elec-
trodes, causing only partial charge exchange with ice, leads to observation of "false" extra dis-
persions and to distortion of the results of low-frequency measurements. The following types
of electrodes used with ice can be found in the literature:

1. Blocking electrodes (Gross 1975, Mounier and Sixou 1%9, Zaretskii 1991).
2. Cold plasma (Auvert and Kahane 1973).
3. Palladium, or palladium black, saturated with hydrogen (Bullemer et al. 1%9, Petrenko

et al. 1983).
4. Ohmic electrodes with double electric layers at the ice/metal interface, (Petrenko and

Chesnakov 1990a,b,c).
5. Liquid electrodes (von Hippel et al. 1973).
6. Ion exchange membranes (Kahane 1969).

Every electrode type listed above has been used in many experiments. The references given
indicate either the first use of such electrodes or the most detailed description of the technique.
All electrodes listed yield good reproducible results, but from our perspective, the most reliable

To Power Supply

I1
Ice Insulating Ring

J.To Measuring Device311

Figure 20. Cylindrical ice sample with two attached
electrodes and the guard ring.
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and easily built are blocking electrodes, in which the charge exchange is totally eliminated by
thin dielectric films placed between ice and metal, and the Ohmic electrodes described in
Petrenko and Chesnakov (1990a,b,c), in which the charge exchange is perfect, since electronic
energy levels in ice and metal become equal (see the Charge Exchange at Ice/Metal Interfaces sec-
tion). Still, it is probably a matter of taste.

Surface conductance and guard rings
As we will see later, at temperatures T >-250C, even in pure ice a considerable surface con-

ductivity, which under certain conditions exceeds the bulk static conductivity of ice, is observed.
There are several ways of checking surface conductance (use of the four-point method, for in-
stance [Jaccard 1966]). However, the use of a guard ring, sketched in Figure 20, is the most reli-
able and widely used technique. The main point in using guard rings is that surface currents
will not enter the measuring circuit, thus flowing down to ground. For this to occur, the elec-
tric field vector must be parallel to the surface at every point (to prevent surface currents from
flowing down into the bulk and "back"). It is important, hence, that the potential of the guard
ring be almost the same as at the bottom electrode. The last condition is provided when R (in
Fig. 20) is very small compared to the ac impedance of the ice sample.

Influence of inhomogeneity on
the frequency dependence of ice conductivity

As a final remark on experimental techniques, let us consider the influence of the
inhomogeneous distribution of charge carriers on the shape of the frequency dependence of
conductivity. For homogeneous ice, complex conductivity i depends on circular frequency as
(eq 67)

iT eat(G* -oCs)
OW = as, -II-i OnD

where, usually, F >> oa. Using eq 71

Mie 32 (139)
(1-iO tD)ý "

If i depends on x i = 4whx), where x is the axis perpendicular to the electrodes, then thin lay-
ers with thickness dx will be connected in series and the "apparent" conductivity iap will be

where

L
TDM =1rD(X)dX. (141)

0

Hence, we have again in eq 140 a regular Debye's dispersion, as in eq 139, but with an "aver-
age" rD. On the other hand, when the inhomogeneity of i(o) exists along the electrodes

35



;aP = -i ; (oy, z) dy dx (142)
S

and ip is the sum of dispersions with different tD (and COD) and of different amplitudes (a_ -
as). Indeed, in a real experimental situation, ice samples prepared for electrical measurements
very often have an inhomogeneous distribution of charge carriers. That inhomogeneity may arise
from the presence of impurity concentration gradients, dislocations and so on.

REVIEW OF EXPERIMENTAL RESULTS ON
ICE CONDUCTIVITY AND DIELECTRIC PERMITTIVITY

The very first scientific research in ice conductivity of which this author is aware began more
than 100 years ago (Ayrton and Perry 1877). At present, the list of papers devoted to the electri-
cal properties of ice contains several hundred items. It is extremely difficult to conduct a com-
parative and critical review of such a vast amount of material. It was already a huge task in the
early seventies, when Hobbs (1974) was working on his famous book. Since then the amount
of information in this field has more than doubled, and here we present the material in a com-
pletely different way.

First of all, notice that all theoretical and model considerations introduced previously in this
report are based upon critical analysis of the totality of experimental data. Therefore, our pri-
mary goal now is to illustrate the validity of these ideas in the context of some particular ex-
perimental research and to provide the reader with some useful numerical data on the abso-
lute values of conductivity, activation energies, charge carrier mobility, relaxation times and
dielectric permittivity, and the values of electric charges.

In pursuing this, inasmuch as the amount of material available is much more than is neces-
sary for illustration, in the future we will be guided by the following criteria. We will consider
first mainly recent works not included in Hobbs' book and, secondly, works that are remark-
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Figure 21. Frequency dependences of pure
1 0- - icedielectricpermittivity e and conductiv-

10-1 100 101 102 103 10 4  105  ity o, T = 270.2 K. The letter "D" indicates
f(Hz) Debye dispersion (after Noll 1978).
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able in some aspect (original techniques, precision of results, the role they played in establish-
ing modem understanding of the subject, etc.). Of course, the choice is still rather arbitrary, and
the author presents his apologies in advance.

We will begin our review by discussing the general form of dispersion curves (7((o) and E(a0).
As we have seen earlier, Jaccard's theory predicts the presence of only one singularity in the
spectrum (single dispersion), as shown in Figures 2 and 5. Such dispersions are observed when
a limited range of frequencies close to 'oD is used. When the frequency range is widened, an extra
dispersion appears. All four low-frequency dispersions (including Debye dispersion) predicted
by Jaccard's model and modified for a finite-dimension specimen were detected by Maidique
et al. (1970) in ice specimens being annealed for 10 months.

Three separate dispersions for o < o)D were observed by Noll (1978) (see Fig. 21). Many other
authors reported the observation of one extra dispersion at frequencies less than o). As we have
seen in the Electrical Pro ies of Ice of Finite Size section, these dispersions are caused by screen-
ing layers formed near the ice specimen surface that consist of various charge carriers. As men-
tioned already in that section, such dispersions can yield a lot of information about concentra-
tion and mobility of charge carriers (Zaretskii et al. 1987a, Zaretskii 1991). Since these disper-
sions appear at the "electric" boundaries of the ice specimen, where an electric potential drop
occurs, then, if electrodes providing a perfect charge exchange with ice are used, these
singularities disappear at frequencies o) < o

Many authors also note the presence of small additional dispersions in some ice specimens
at frequencies o) > oaD. Maidique et al. (1970), for instance, reported observing two such disper-
sions. The nature of these high-frequency dispersion-s is still unclear and under discussion. It is
possible that all (or at least part) of these dispersions are determined by the existence of local
inhomogeneties in ice, which we discussed in the previous section.

Measuring dispersion curves a(wo) allows us to determine the values of static (as) and high-
frequency (a_) conductivities. From measuring a,, and a, at various temperatures, the activa-
tion energies Ea, and EMs can be calculated. Since a - n -g, these activation energies come out
to be the sum of 1) activation energies of the creation of charge carriers (EaB and E, for Bjerrum
defects and ions respectively) and 2) activation energies of defect motion E•. Experiments car-
ried out on ice doped with various impurities allow us to predict charge carrier concentrations
and thus to separate values of n and g and to separate the activation energies of creation and
motion of charge carriers as well. The results of such measurements are summarized in Tables
1-3. We present below the "guidance" for these experimental results.

The most well established conductivity parameters for pure monocrystalline ice are evidently
high-frequency conductivity a, and its activation energy Ea,. Good reproducibility of these
quantities, determined by the conductivity of majority charge carriers (L-defects for T 5 -50*C),
is attributable, first, to high-frequency measurements not depending upon electrode type. Sec-
ond, it appears to be comparatively easy to attain a degree of purity in ice, such that a_ is de-
termined by intrinsic carriers and does not depend upon residual impurities. The same holds
for mD and Er, since, according to eq 69 and 70, ,D o a- always when o >> a, i.e., when the
majority type of charge carrier is clearly distinguished. These four values at T = -10°C are as
follows

E,_ =-(0.58 ± 0.03) eV; E, = (0.58 ± 0.01) eV (143)
= (1.8 ± 0.2) 10-5 1 ; QD -- 5 -5s

The Debye dispersion is reproduced very well in perfect crystals-pure, homogeneous and
annealed (for relaxation of internal stresses).
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Considerably greater scattering is observed in data from measurements of static conductiv-
ity os and its activation energy Es. Values of Es appear to lie between 0 and 0.7 eV and a, (-

10°C) varies in limits from 10-6 down to 6 x 10-10 -1 m-1 . This is explained by the difficulty in
purifying ice to a level at which intrinsic ions dominate over ions supplied by impurities. That
is why von Hippel (1971) and von Hippel et al. (1973) drew the conclusion that there are no in-
trinsic ions in ice and that all ions originate in impurities. If we refer to Table I from their work
(von Hippel et al. 1971) for the value of ay (2.5 x le ir- m- 1) and compare it with the minimal
observed value 6.4 x 10-10, then we might agree with them-their ions were of impurity ori-
gin. The question, however, remains open: Were the specimens in the experiments of Worz and
Cole (1969) or Petrenko et al. (1983) pure enough that their conductivity may be considered
intrinsic? The following general trend is observed: The more pure the ice and the smaller a,
the greater is Eas Therefore, the value of the activation energy of creation of an ion pair Ea, =
0.96 eV (Eigen and De Mayer 1956, 1957, 1958; Eigen et al. 1964), considered for a long time to
be commonly acknowledged truth, should be treated as the lowest possible limit of this quan-
tity. As the "available" upper limit we can take E.i = 2Eas = 1.4 eV from the work of Petrenko et
al. (1983).

Good experimental confirmation of theoretical concepts about the effect of impurities on ice
conductivity (the Proton,:. Charge Carriers Introduced by Doping section) has been indicated in
many papers (see, for instance, Takei and Maeno 1984,1987; Camplin et al. 1978). The most ef-
ficient impurities for the increase of H3O+ ion and L-defect concentrations appear to be the
acids HF and HCL. KOH doping increases OH- ion and L-defect concentrations, so that, firstly,
ice with amazingly large conductivity (up to a5 = 10 0-1 m- 1 at T 0°C) can be obtained and,
secondly, considerable conductivity (as) is observed at temperatures as low as -200 0C (Zaretskii
et al. 1988).

The determination of charge carrier mobilities in ice is an extremely difficult task, since, be-
cause of small values of j±i and the "hop" mechanism of motion, the regular technique for mea-
suring the Hall effect is inapplicable in this case. (The Hall effect will be discussed in the report,
Surface of Ice, listed in the Foreword.) Hopes of using "saturation currents" for detennining pi are
not justified, because of reasons pointed out by Maidique et al. (1971) in their critique of Eigen's
work, and also because when high voltage is applied to a system with ice/metal interfaces,
various physical phenomena that make the interpretation of results more complicated are ob-
served (see Part II).

Nonetheless, several new techniques for determining charge carrier mobilities in ice have been
developed and employed during the last 25 years. These are the stationary and transient injec-
tion currents measurement technique (Eckener et al. 1973, Petrenko et al. 1983, Petrenko and
Ryzhkin 1984b), the ice field effect transistor (Petrenko and Maeno 1987), and the low-frequency
dispersion measurement technique (Petrenko and Ryzhkin 1984a, Zaretskii et al. 1987, Zaretskii
1991). The idea of determining aii and ni from the parameters of low-frequency dispersions was
presented in the Electrical Properties of Ice of Finite Size section. Other techniques mentioned above
will be described and discussed later in Part 1I. The results of determining charge carrier mo-
bilities in ice are summarized in Table 2. At first glance only the data on L-defect mobilities seem
to be satisfactory. At T =-10°C, p4 = (2-5) x 10-8 m2 /V s. This mobility drops exponentially with
decreasing temperature, the activation energy being 0.19-0.235 eV (see Table 1).

Still, there is no reliable information about D-defect mobility. There is only indirect evidence
that g3 < p4.

Data on ion mobilities are distinguished at first glance by large scattering (from 5 x 10-7 down
to 2.5 x 10-8 for H3O+ and from 4 x 10r7 down to 2 x 10-10 for OH-). However, if we discard
large values obtained by the now-discredited method of saturation currents and values obtained
through measurements of low-frequency dispersions (which still are not accuracte enough) as
well, it appears that positive ion mobility lies within the limits 2.7 x 10-8 and 1.1 x 10-7 m 2/V s
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Table 2. Mobilities of charge carriers in ice.

T U] P2 P3 PU4
(00C (m2 V s) (m21V S) (M21V s) (m2/V s) Method used Reference

-13 to -36 (1.1±O..1)xl0'7  Analysis of Kunst and
conductivity Warman (1983)
decay

-10 2.5x108 a, and E. Wdrz and Cole
measurements (1969)

0 to -20 5xlO-7 Saturation Maidique et
currents al. (1988)

-123 S4xlO-7  Doping with Zaretskii et
KOH al (1988)

-5 to -40 1r-9_ I0-7 Proton injection Petrenko et al.
(1983)

0 2.7x10 4  5x10-8 Doping with Camplin et al.
HF (1978)

-10 1.8xi0"8 Doping with Jaccard (1959)
HF

?2xl0-I0  Howe and
Whitworth
(1989)

-10 (2.4±1.6)x10-7  Saturation Bullemer et al.
currents (1969)

-10 3.5x108 HF doping Camplin and
Glen (1973)

-33.1 9.2x10-8 2.7xi0" Ice field Petrenko and
transistor Maeno (1987)

-145 to -178 (9 ±1)x1O- Transient Eckener et al.
injection of (1973)
protons

-10 =10-6 1.7x10 4- Low-frequency Zaretskii et
dispersions al. (1987a)

-33 (6.7±0.8)x10 7  Low-frequency Zaretskii (1991)
dispersions

-20 6x10-8  Proton injection Petrenko and
Ryzhkin (1984b)

-10 2.410-8 Recombination Petrenko and
injection Chesnakov

(99oc)

-not bad at all! The author of this review prefers the data obtained in transient injection ex-
periments (Eckener et al. 1973), in which a minimum of assumptions was used. The same H 3O+
ion mobility was found by Petrenko and Maeno (1987) using field effect transistors So, it is likely
that g, E 9 x 10-8 m 2/V s. We can consider it safely established that both H3O+ and OH- ions
move with zero activation energy; this is in good agreement with concepts about the tunneling
of protons along hydrogen bonds.
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Table 3. Ratio of effective electric charge of H30÷ ion (e1 ) and

of D-defect (e3) to proton charge (e).

e1Ie e3/e Reference

(0.61 ± 0.02) 0.39 ± 0.01 Zaretskii et a]. (1988)
0.73 0.44 Camplin et al. (1978)*

0.62 ± 0.01 0.38 ± 0.01 Hubmann (1979a)
0.626 0.374 Takei and Maeno (1987)

0.64 ± 0.03 0.36 ± 0.03 Scheiner and Nagle (1983)

* Data fitted without requiring el+e 3 = e, may cause some
errors in their values in Tables 1-3.

In this section we are not going to con- 10-7

sider in detail the surface conductivity of
ice, since its nature evidently differs appre-
ciably from Jaccard's model, which is actu- Surface
ally a theoretical framework for this reporL t

It will be more convernent to discuss the
problem of the surface conductivity of ice in
one of our future reports, specially devoted 10
to ice surfaces. Here we restrict ourselves I 33.7 3.8 3.9 4.0
to Figure 22, adopted from the work of 1000/T
Bullemer and Riehl (1966), which illustrates
the relationship between bulk static conduc- Figure 22. Temperature dependence of bulk and
tance and surface conductivity, surface conductance of pure ice specimen (after

Let us now briefly consider experimen- Bullemer and Riehi 1966).
tal results on measurements of ice static di-
electric permittivity % and compare these results with the predictions of Jaccard's model.

Note first of all that theory yields quite a consistent dependence of e as a function of (o, both
in the region of principal Debye dispersion (see eq 74) and in the low-frequency dispersion re-
gion, as was described earlier. The predicted absolute value of static dielectric permittivity Es =
102 (-100C) and its increase with temperature decrease (see eq 72) are also confirmed. As we
will see in Part H, the value of e is brilliantly predicted in those cases when the values of oi and
aB become comparable (so called "crossover," discussed in Part IH), which again follows from
eq 72. Yet, the theory in its present form has some problems. For example, it does not account
for the slight anisotropy of e observed in a number of experiments. Let us refer to one of those
recent works by Takei and Maeno (1987) where they found that

2.41 x 104K -
(

s-EE C (144)
T- 2.2K

2.3 x 10 4 K ' -E- E, E JIC. (145)

T- 48.7K

As can be seen from eq 144 and 145, instead of the predicted behavior of (e-se-) according to
Curie's law (see eq 72)

(Es -c..) - T (146)
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the Curie-Weiss law is observed

(Es - E-) 1 (147)
T -T

which implies a transition to the ordered phase at T < T,. There is a considerable discrepancy
in Tc in the data of various authors who performed experiments on pure monocrystalline ice.
It ranges from 0 K, according to Ruepp and KMss (1969), up to 48.7 K, according to Takei and
Maeno (1987). Some errors in measuring es in "pure" ice at low temperatures can arise because
of increasing screening lengths and an apparent drop of - (see the Electrical Properties of Ice of
Finite Size section). Hence, critical temperatures Tc observed in pure ice can be treated as the lower
limit of actual critical temperatures. In fact, Tajima et al. (1982) found the transition of KOI-t-
doped ice into a partially ordered state to occur at T = 72 K.

In general, we should infer that at present Jaccard's theory (along with its further develop-
ment) describes well, bcth quantitatively and qualitatively, the diverse electrical properties of
ice. As a brilliant illustration of this, I ask the reader to admire Figure 21 once again!
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PART II. ADVANCED TOPICS AND NEW PHYSICAL PHENOMENA

In this part we treat more advanced and special questions concerning the electrical proper-
ties of ice. Most of these belong to the frontiers of research in the "physics" of ice, as an object of
solid state physics. The results and physical models presented here should be, for the most part,
of interest to physicists and chemists doing direct research on ice, rather than the larger group
of readors who intend to use information about ice properties only for some applications.

CHARGE EXCHANGE AT ICEUMETAL INTERFACES

The electric charge exchange between ice and metal determines the conditions for electric
current flow through ice via metallic electrodes. Such an exchange plays an essential role in the
process of chemical reactions at the ice/metdi i terface. Common metal oxidation can serve as
an example of such reactions. A future report devoted to electro--optical effects in ice finds that
photochemical reactions also proceed at such interfaces, which implies electron exchange be-
tween ice and electronic conductors (metals, semiconductors).

It has been common knowledge for a long time that stable electric currents cannot pass
through an ice/metal interface, even when precious metals (Pt, Au), which have a surface that
is not oxidized by contact with ice, are used. Applying constant voltage to ice with two metal-
lic electrodes results in a short current "pulse," which attenuates exponentially according to the
presence of several relaxation times (see the Electrical Properties of Ice of Finite Size section and
the previous section). That is, no regular metallic electrodes are capable of providing a stable
charge exchange between ice and metal, which is necessary for a stable dc flow.

Hydrogen saturated Pd electrodes are an exception, but in this case Pd and ice exchange
protons, rather than electrons (see the Proton Injection from Pd Electrodes into Ice section for de-
tails). Note also that there is a charge exchange between metal and a quasi-liquid surface layer,
since there are surface currents present.

There are no obstacles to dc flow through water and two metallic electrodes. Insofar as elec-
tronic level structures in water and ice are rather similar (which can be inferred from optical
measurements), such differences in the properties of ice/metal and water/metal interfaces are
puzzling.

The key to the mystery was found at first in the work of Evtushenko et al. (1988), in which
for the first time a technique was developed that ensures a stable dc flow through the ice/metal
interface. The ultimate understanding was achieved thanks to work by Petrenko and Chesnakov
(1990b) and Chesnakov (1990). I present below a brief account of the results of these investiga-
tions.

Since the electronic level structure of water and ice are similar, we will start with water, whose
charge exchange with metal is well known (see for instance Bockris 1979, Vihj 1973). The mu-
tual arrangement of electronic energy levels in metal electrodes and water before (V = 0) and
after (V > 1.23 V) a voltage was applied is shown in Figure 23. The charge exchange being real-
ized is between the Fermi-level of the metal Ef and the hydrogen level EH2 of water at the cath-
ode (according to eq 23) and between Ef and oxygen level Eo2 at the anode (according to eq 24).
The "hydrogen" system includes H3O+ ions, and atoms and molecules of hydrogen. EH2 can
be looked upon as an electron chemical potential in this system. The same is true for Eo2 and
the "oxygen" system, which comprises OH- ions, and atoms and molecules of oxygen. In wa-
ter EH2 - Eo2 = A = 1.23 eV. For efficient electron exchange between two levels to be realized,
their equalization is required. In the case of water, where the potential difference being applied
between anode and cathode V >Ž1.23 eV = A, this equalization occurs automatically because of
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the double charged layers being formed it V 0

the water/metal interface. EH

The double layer of the anode consists Ef Ef
of positively charged holes in metal and A=1.23eV

(negatively charged) OH- ions, "stuck" to EoMe
the electrode surface in water. The cathode
double layer is formed by electrons in Water

metal and H30' ions "stuck" to the cath- a. Before dc bias application.
ode. The action of such charged double lay- V> 1

ers on the potential is analogous to the ac- e
tion of flat, charged electrical capacitors--- Ef

they provide an electrical potential drop, A
necessary for level equalization. If V > A, fthe rest of the voltage drops at water bulk. °

Electrons, passing from water to metal and _+.O
back, overcome an energy barrier having a " 0÷ OH
width about that of the double charged- I+

layer. In the case of water, the width of this
barrier is several angstroms and electrons
penetrate it easily by tunneling. In the case b. With dc bias applied.

of ice, the width of a similar layer, which is Figure 23. Electronic energy levels in water and
nothing more than a screening layer con- two metal electrodes.

sisting of ions, is about 1 Pm (pm = 104 A),
since, first, the ionic concentration drops by
several orders of magnitude and, second, the effective dielectric permittivity, acting at a range
of several intermolecular distances, decreases (from = 80 down to 3.2). And as we remember
from an earlier section, the screening length 1/ic is proportional to -rF-F (see eq 95, we have to
use for water e = 80 and for ice e = c- = 3.2). As a result, for the potential difference being ap-
plied to ice with two metallic electrodes attached, although the double charge layers equaliz-
ing electronic energy levels do form, the width of these layers is so great that electrons cannot
overcome it through the tunneling process.
As a result, dc does not flow! (A = 123 + 0.06 16 1 1 1
= 1.29 eV is also greater in the case of ice.) _
Here, we have taken into account the latent
heat of ice melting (0.06 eV). 12-

However, as was shown by Evtushenko I E
et al. (1988), the problem of charge exchange <
between ice and metal can be solved, pro- 13 8-

o

vided that at first thin and dense charged . -
double layers are formed at the metal/wa- 4

ter interface, and are then frozen down to
T < -10C. These thin ion layers at the an-
ode and cathode provide good conditions 0.
for charge exchange between ice and metal I i I I I
electrodes. The layers themselves appear to -900 -600 -300 0 300 600 900

be very stable and can exist for one day at U (V)

T =-10°C and for one week at T< -20°C. Figure 24. Current-voltage characteristic of ice speci-
Such a long lifetime is explained by a large men with two Pt electrodes. Electrically charge double
discharge time and constant RC of such a layers were formed at Pt/water interfaces and then fro-
system, where C-10-4 F/cm 2 and R > 10-9 zen down; T = -IOcC (after Evtushenko et al. 1988).
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Q1 cm2, which yields > 10> s (T .= -10°C). An interesting peculiarity of electrodes processed in
this way is that they let current pass in only one direction; i.e., they appear to be quite good rec-
tifiers, as indicated in Figure 24 (see also Fig. 30) The rectification ratio reaches values of 104 and
more. Further on, we will refer to these electrodes as ohmic, because of their ability to let elec-
tric current pass essentially without voltage drop (above = 1.5 V, necessary to compensate for
"frozen" potential difference). After the preparation process is over, the electrodes (with the
double layers of ions and thin layer of ice) can be removed from the bulk of ice and used with
other specimens (monocrystals for instance). They have already found a use in several research
works.

RELAXATION TIMES OF ELECTRIC POLARIZATION
AND ELECTRIC FIELDS IN ICE

The question of electric field and polarization relaxation rates has general scope and can be
found in many real applications. An electric polarization can arise owing to both various exter-
nal effects (external electric fields, mechanical loadings, temperature gradients) and internal
changes, such as crack growth. Onceelectric polarization P appears, how fast (or for what char-
acteristic time) will it decay? Since P will be "dissolved" by means of protonic charge carrier
motion, then it might seem we have already found an answer to this question in earlier sections.
First of all, this is Debye relaxation time TD, determined by the majority charge carrier motion.
In the case of ice having boundaries, slower relaxation processes, determined in terms of mi-
nority charge carrier motion, can be observed at time intervals longer than TD. However, we
might expect that the better part of the polarization will disappear with the most rapid charac-
teristic time TD. Although we hear this answer from most people doing electric measurements
on ice, it is absolutely wrong!

Let us try to illustrate this fact.Consider a very large ("infinite") ice volume, and a relaxation
process of electric polarization P, arising in a finite domain of this ice volume. Obviously, the
following equation, familiar from electrodynamics, holds

div E - -div P/eo (148)

where p = space charge density._
Taking into account that curl E = 0 (quasi-stationary approximation), we can conclude from

eq 148

E+ = 7--l +f(t) (149)
CEo

where the vector f can depend only upon time. But taking into account that there is no electric
field at infinity (that is why we consider "infinite" ice) f (t) = 0 and

E -P/ oE. (150)

We are interested in this particular case in the most rapid process, determhied in terms of ma-
jority charge carriers, i.e., carriers having maximal conductivity. In the case of ice those are usu-
ally 04 (L-defects)

4
p = ,ejjj _= -e3 i4 (151)

j=1
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-(-e, 3 -E )'G (152)e 3

j' = 4 (t) dt j 4 • (153)

0

Substituting eq 150,151 and 153 into 152, we obtain the desired kinetic equation, defining the
time dependence of E

E + E It = 0. (154)

From here

E = E•(0) exp (-t/ ) (155)

where z is defined as

1=_ 1 +- 1(156)
T TM T'D

a
1 = 04 (157)TM CE0 1/T• - /' D

1 - 04 (158) H
Note that ?D is already familiar to us as Debye
relaxation time (see eq 43 and 71) for our case of
one type carriers' motion. tM is the still more well- b
known Maxwell dielectric relaxation time, intrin-

sic to space charge "relaxation" in ordinary 1/T - 1/'D + 1/T M
conductors. As can be seen from eq 156, relaxation
rate (/IT) is equal to the sum of Debye and Max-
well relaxation rates. This result has a simple in-
terpretation. The driving force acting upon carri-
ers is the electric field in the c•..e of Maxwell re-
laxation, while Debye relaxation time TD is asso-
dated with the effect of the configurational vec- I/TD < 1/• < 1/T D +I/TM

tor 91. In general, charge carriers in ice are sub-
jected to both E and d, which accelerate re-
laxation processes.

Of course, to obtain results (eq 154-156) it is not
absolutely necessary that the ice volume be "infi-
nite." Figure 25 illustrates this. For ice saecimens R
cut in the form of thin plates, so that P initially
was normal to the plates, we can then neglect the Figure 25. Characteristic time r with which
end effects and the exact solution is again given electric polarization of ice relaxes for different
by the equation boundary conditions.
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P+ P/" =0 (159)

where T depends upon forces acting upon carriers, which depend on boundary conditions. Note
that given Rice as an ohmic ice resistance, then in the Figure 25c circuit we have for Rce/R --* 0

A - 1_ +.._ (160)
T TD TM

and for Rice/R -o

1 - . (161)
"T TD

These remarks illustrate the importance of ice resistance and input circuit resistance ratio for
correct determination of relaxation times!

RECOMBINATION INJECTION OF IONS INTO ICE

In the Concentration of Charge Carriers section, we considered physical laws that determine
charge carrier concentration in ice in a state of thermal equilibrium and in the absence of exter-
nal excitations. The next four paragraphs will be concerned with the electrical properties of ice
in strong electric fields. As we shall see below, the application of an electric field can lead to a
considerable increase or decrease of equilibrium proton charge carrier concentrations, depending
upon electric field strength, boundary conditions and specimen thickness.

We will start with a description of so-called recombination injection. This phenom'.non was
originally discovered in pure water (Petrenko and Chesnakov 1990d) and later -'lso in pure ice
(Petrenko and Chesnakov 1990c). A reversible increase in ac conductivity of ice and water thin
layers, through which a weak direct current was passed, was observed. An example of this ef-
fect of direct current on water conductivity is shown in Figure 26.

2 -

0 I Ii [
0 100 200 300 400

t, s

Figure 26. Dependence of ac conductivity of pure water a on time
t, when a small dc bias (3 V) was applied; ac conductivity was mnea-
sured at f = I kHz; T = 20°C; space between two Pt electrodes was 3 mm.
Dashed lines indicate moments when the bias was turned on (t = 0 s) and
turned off (t -= 210 s) (after Petrenko and Chesnakov 1990d).
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I - curve is for a Pd cathode and a Pt anode; 5-

0 1 2 3 Vdc bias isapplied; T = 20 C (after Petrenko
I (mm) and Chesnakov 1990d).

The conductivity increase is completely reversible, i.e., it ceases after the dc bias is switched
off and is not related to electrodes dissolving in water or ice. The effect is equally successfully
observed when electrodes made from Pt, Au, C or stainless steel are used. The threshold volt-
age, at which an increase of Y arises, appeared to be equal to the threshold electrolysis voltage
(about 1.5 V in the case of water and slightly less than 2 V in ice). It has been shown by measur-
ing conductivity between two micro-electrodes that the conductivity increase is not uniform
throughout the space between electrodes (Fig. 27). The maximal increase of a is observed dose
to the anode and cathode, damping exponentially as distance from the electrodes increases. To
this end, the characteristic width of excess conductivity zones coincides well with the diffusion
length of ambipolar H3O+ and OH- ions' diffusion

Xd = ý'2rL (162)

where D is the diffusion coefficient of the less mobile ion (OH-) and rL is the non-equilibrium
ions' lifetime. It has been found that in water XD = 3.4 x 10-4 m (T = 20°C), and in ice X D- 4.5 x
10-5 m (T = -30*C). Under the same conditions, the non-equilibrium ions' lifetime is tL = 7 sec-
onds in the case of water and TL = 2 seconds in the case of ice. It turned out that an increase in a
in zones adjacent to the electrodes is caused by formation of excessive OH- and H3O+ ions,
concentrations of which must be approximately equal owing to constraints imposed by space
charges.

The key to understanding the mechanism of excess conductivity was provided by experi-
ments in which a Pd cathode was used. Pd absorbs atomic hydrogen, generated in the electrolysis
process according to the reaction defined by eq 23, from water. In cases when the atomic hy-
drogen does not get into water (or ice), the zone of excessive conductivity does not form near
the cathode (Fig. 27). It is assumed that the excess ions form because of energy release in the
atomic hydrogen and oxygen recombination process

H + A I --* H2 + 4.5 eV (163)

O + 0-+-02 + 5.1 eV. (164)

The quantities 4-5 and 5.1 eV are adopted from the book of Sokolov (1976).
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Figure 28. Variations in low-frequency
conductivity of pure ice measured at 30
Hz when 10-Vdc bias zws turned on and
olf, T = -30'C; sample thickness is 0.5 mm;

0 Iohmic electrodes were used (after Petrenko
5 t (S) 10 15 and Chesnakov 19900).

The energy released in each recombination, defined by eq 163 and 164, exceeds by many times
the energy required for producing an ion pair (-1 eV in the case of ice [see the Review of Experi-
mental Results on Ice Conductivity and Dielectric Permittivity section] and 059 eV in the case of water
[Fletcher 19701).

Therefore, we can assume that at least part of this "tremendous" energy is spent on produc-
ing new ion pairs. Non-equilibrium ions, originating near the anode and cathode, then diffuse
into the specimen bulk, thus increasing the bulk conductivity. For this phenomenon to be ob-
served in ice, ohmic electrodes, described in the Charge Exchange at Ice/Metal Interfaces section,
must be used. The effect of weak electric current (-10-6 A/cm2) on ice conductivity is represented
in Figure 28. Conductivity was measured in this experiment at a frequency of 30 Hz << (OD; i.e.,
the measured conductivity corresponds to static conductivity. The latter is determined by OH-
and H3O+ ion motion. The relative change of high-frequency conductivity u0, is practically unde-
tectable in this case, since a- >»> os - A~s.

The phenomenon described here is of great interest, because it allows us to determine the
lifetimes and diffusional lengths of charge carriers in water and ice by direct methods.

It is curious that for thin ice (and water) specimens having thickness L less than diffusional
length XD, nonlinear current-voltage characteristics are observed (Fig. 29). They can be readily
explained theoretically. Let us consider an ice specimen with L << XD, such that ionic concen-
tration ni can be regarded as uniform, independent of coordinates. Also let a be the number of
ion pairs produced as a consequence of passing a single electron charge e through the specimen
((x > 1). Then the balance between production and recombination of ions will be defined by the
equation

L (G -P3ni2) + a 0 (165)
e

where G is the rate of thermal production of ions in ice and 5 ni2 (13= const) is the recombina-
tion rate in the bulk. For current density J, the following relationship holds

as=O E - ( 2 ) ( 11 + 02 )Y = (-2) [ýi + g2] ni L (166)

F -n eq 165 and 166 we readily obtain (for weak currents a - < < G)
e

(e = 2) [gl + g2] VFG .V V (167)
~ei P L

i.e., Ohm's law. For large currents (Ca IJ>> G) we have

J _ ýe [g1 + g2]2 V2 _ V2 . (168)

P e 2  3 4el
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Figure 29 illustrates perfectly the transition

from Ohm's law, in the case of small currents,
to square current dependence from voltage as
current increases.

In conchLusi, let um note that the energy re- 10-7

lease near the cathode and anode, which ob-
viously results in an increase in the number of
ions, may also increase the number of B*errum 1(A)
defects in comparable quantities. However, 10

since the aonentration of the latter exceeds by
several orders of magnitude the ions' concen-
tration in pure ice, this does not alter nB appre- 10-9 0

ciably. It appears that for ljerrum defects the -
phenomenon described next is much more es-
sential.

10-1 I I

10•1 100 v 101 102

RECOMBINATION EXTRACTION OF Figure 29. Current-voltage characteristic of a
CHARGE CARRIERS FROM ICE thin (20-in) ice specimen with ohmic electrodes;

T = -301C; electrode area 2 cm2 (after Petrenko
First, a decrease in o., a static electric field and Chesnakov 19900).

being applied, was observed by Petrenko et al.
(1983) (see Fig. 2 of their paper). However, at
that time no importance was attached to this observation. Later, an effect of static electric fields
on ice conductivity, which is opposite to that just described in the previous section, was observed
and studied in tho work of Petrenko and Schulson (1992a, b). It appeared that high-frequency
conductivity ((o > oWD) decreased by a factor between 2 and 10 while a relatively small direct volt-
age was being applied to pure ice specimens (Fig. 30). The relative decrease of Y.. when a di-
rect electric field is applied becomes noticeable starting at a temperature of -10C, and it increase
rapidly at lower temperatures.
The phenomenon is practically
insensitive to the type of elec-
trodes used. So, it has, to the first 1.0
approximation, the same magni-
tude both for ohmic electrodes as
well as for common stainless
steel electrodes; i.e., the effective 0 10-7

charge exchange between ice and s x 1o-A

electrodes does not play such a _
significant role as it did in the
case of recombination injection. 00) - .- ----- -
This observation is well illus-
trated by Figure 30. As can be -10--8A

seen from this figure, the value of 0-60 --40 -20 0 20 40
the observed decrease in o., is V
comparable for both dc bias po-larities. At the same time, dc Figure 30. Dependences of normalized high-frequency conduc-flowsriieay A the osimtive, di- tivity a•. and direct current I on voltage for thin (0.11--mm)
flows readily in the positive di- single crystal of ice; T = -40QC; stainless steel ohmic electrodes were
rection, when the electrodes oP- used; scales for positive and negative polarities of current wry in 20
erate in the ohmic mode, and times (after Petrenko and Schulson 1992a, b).
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practically does not flow in the opposite & i
rection. In terms of potential distribution, o E -0
this means that in the frst case the potential *E E-3x 03VanM

difference is applied to the ice bulk and in
the second case it almost completely drops
at two ice/metal interfaces.

The depedence of ice conductivity mea- C
sured at high frequency on specimen thick- 1
ness is shown in Figure 31. Ohmic electrodes
have been employed in this experiment and 0
an electric field has been applied in a °
"strih" direction. An increase in at,. for ice

thickness less than 10-20 pm is caused by
the effect of recombination injection (which 0 100 200 300 110o
predicts o(; - L-, see the previous section, L (um)
eq 168), and also by the effect of roughness Figure 31. Dependence of q-on sample thickness L4
present at the surface of the electrodes. As T= -4OC; single crystalline, pure ice samples used
for the charactensbc a increase in the spec5 - with ohmic electrodes (after Petrenko and Schulson
men thickness range from 25 to 100 gm, it is 1992a).

easily reproducible and evidently reflects
the internal distribution of majority charge carriers in a thin ice specimen, To account for the
dependence o..(L) shown in Figure 31, the authors of this study assumed that ice/metal inter-
faces are "drains" for Bjerrum defects; i.e., the recombination rate of L- and D+ defects at the
interfaces is much higher than in the bulk. As a result, the charge carrier concentrations decrease
profoundly in layers in which thickness is comparable to diffusion lengths. When the potential
difference is applied, the recombination rate at the interfaces increases even more for two rea-
sons. The first is the increase of defect densities nDand nL inside layers of space charge of thick-
ness about the screening length •1 pm, since the rate of recombination is proportional to (nDnL).
The second is additional drift of carriers in the electric field to the interfaces. Simple numerical
evaluations performed by Petrenko and Schulson may confirm the assumed mechanism. Al-
though the exact mechanism of the direct electric field effect on o. is not absolutely dear yet,
the fact of essential and reversible decrease in majority charge carrier concentrations is reliably
established. This phenomenon promises interesting applications in studies of ice properties that
depend upon majority carrier concentrations-the plastic flow and inelastic relaxation of ice,
for instance.

PROTON INJECTION FROM Pd ELECTRODES INTO ICE

The method of injection current measurement has been very efficiently employed for a long
time in the study of electrical properties of ordinary semiconductors and dielectrics (Lampert
and Mark 1970). By studying the charge carriers' injection into the bulk of the investigated
material, one can determine such important parameters as charge carrier mobility, their equi-
librium concentrations, the energy position of traps and the traps' concentrations.

In this method the carriers' space charge is "injected" into a material from an electrode. The
charge value, and hence the number of charge carriers, is known because those quantities are
determined by the laws of electrostatics. Since the concentration is already known, then the
mobility can be calculated from conductivity measurements.

Let us clarify the main ideas of such experiments by following simple reasoning. Suppose a
direct electric voltage V is applied to a conductor with two electrodes (Fig. 32). The electrode
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Figure 32. Injection of protons into ice from
S~Pd electrode saturated by hydrogen. P'd cath-

+ ode works as proton acceptor. Upper diagram il-
+ l-lustrates distribution of protonic concentration

n and electric field E inside the specimen bulk.

under positive potential is able to inject positive charge carriers with charge value e; i.e., this
electrode is an "infinite capacity" reservoir of such carriers. Therefore, the carrier concentration
in the vicinity of the electrode n(+0) = oc, which implies that the electric field E(+0) =0, because
of "infinite" conductivity of the media at this point. The other electrode, at the point x = L, is
the charge carrier receiver. Apparently, when a voltage V is applied, the carriers will be "pushed"
into the bulk, increasing the conductivity of a specimen. In the case when concentrations of in-
jected carriers are much greater than equilibrium concentrations, we can readily write down a
dosed system of equations that defines injection current density I, electric field strength E and
carrier concentrations n

dE _ P _ en (Poiso's equation) (169)
dx •-o •eo

J =ej = en ~iE = const (170)

P EdX = V; E(O= 0, =( +O)=. ( 11)

The solution is given by an elegant formula

l = • •p V2(172)

8 L3

in which there appears only one unknown parameter, j.• which can be found from experimen-
tal measurement offJ. Therefore, we can determine charge carrier mobility by means of injec-
tion current measurements. That is not all. The concentration of injected carriers is

n 3 q Vi•/-- (173)
4 eL 2
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and the "average" bulk concentration is

<n>=ifn(x)dx= F-0 V. (174)
2 e L2

0

If equilibrium charge carriers with concentration no are present in the investigated material, then
at small voltages V (small level of injection) a linear zone will be observed on the voltage-cur-
rent characteristic, i.e., Ohm's law

10 = e no Y. (175)
L

The transition from dependence (eq 175) to eq 172 will occur in the region where J - J0. From
here it follows that

Vtran (9e 6 ,L2on (176)

i.e., having determined Vtan from current-voltage characteristics, we can calculate n0.So, the
injection currents technique allows us to determine charge carrier concentrations and mobili-
ties in those materials in which the Hall effect cannot be measured-because of extremely small
mobility, for instance, as in the case of ice.

At first glance the injection of protonic charge carriers into ice is extremely complicated, since
there are four types of such carriers in ice and their motion is correlated through a configura-
tion vector U. In fact, the mathematical description of injection currents theory in ice is compli-
cated and space-consuming. The results of this theory are nevertheless simple and dear, which
allows us to interpret them successfully in the
context of the consideration just performed.

The theory of injection currents in ice was de- Ig/
veloped for the first time in the work of Petrenko
et al. (1983), in which a solution was obtained for
one particular case: the injected proton concentra-
tion exceeded the equilibrium ion concentration,
but was still much less than the Bjerrum defect
concentration. The general problem was solved
later (Petrenko and Ryzhkin 1984b). Either a pro-
ton can be injected into ice from outside, which
introduces an H30 ion and a D-defect si-
multaneously (see Fig. 8), or protonic "hole" oc-
curs, which is equivalent to the production of an-
other defect pair-an OH- ion and an L-defect. III IV
The equations describing the proton and protonic I

"hole" injection into ice are the same. Therefore,
it is enough to consider the case of proton injec-
tion as an example.

The theoretical current-voltage characteristic Nt Vt2 g V

of injection protonic currents in ice, adopted from Figure 33. Theoretical current-voltage charac-
the paper of Petrenko and Ryzhkin (1984b), is teristic for proton injection into ice (see expla-
shown in Figure 33. Zone I (Ohm's law) is ob- nations in the text [after Petrenko and Ryzhkin
served when the average concentration of injected 1984b]).
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protons np is much less than equilibrium ionic concentration ni. When np becomes greater than
n, but is still less than equilibrium BEerrum defect concentration no, zone U must be observed,
inwhichI- V2

9-ESEOA eo V21 (177)
8 el L0

As can be seen from this formula, we can determine H30' ion mobility gL from measurement
of 1. Note also that the magnitude of injection currents in zone U is proportional to a large
(- 102) static dielectric permittivity of ice es. The maglnitude of the transition voltage Vu is char-
acterized by the condition that np = ni. Hence, using eq 176 and e = c one can determine the
equilibrium ion concentration.

When voltage magnitude and level of injection are increased, it may happen that nP> no. In
this case, since for injected carriers ni = no holds, the concept of majority and minority charge
carriers ceases to exist. The constraint on carrier motion imposed by the configuration vector is
also eliminated, the carrier motion becomes uncorrelated, and c drops from E. - 100 to C., - 32.
This leads to the following observation in zone IV, where the current magnitude is the square
of the voltage, but the proportionality coefficient is smaller

2- IEEO vj. (178)
8 le 1• g,+e 3 9 3 ) L3

This allows us to calculate both the minimal mobility of the two (Ii, or g3) from measurement
of I and the equilibrium Bjerrum defect concentration from the Vt2 value.

If measurements of current in the case of protonic "hole" injection were performed, we could
determine all four mobilities , and all four equilibrium concentrations nl,...n4.However,
experimental studies in the field of injection currents are much less successful than theoretical
ones. In all experimental works on injection currents in ice, hydrogen-saturated Pd or palladium
black were used as proton injecting electrodes. Here, hydrogen, which could be dissolved in
Pd with concentrations close to one, gives its single electron to Pd and readily migrates in the
Pd lattice. Pd can be saturated with hydrogen in a water electrolysis process (when Pd is a cath-
ode) or in a heating process under high pressure in a hydrogen atmosphere. Such protonic in-

Pd - PdIII

102- 
CM

C (PF)10
C p)101 107 Figure 34. Disperion curves for

G (0-) pure, monocrystalline ice speci-
men with two H-loaded Pd elec-

SC? trodes of area = 15 x 9 mm 2,
100 i0. thickness = 0.7 mm, tempera-

ture = -16 0C. C(0) and G(0) are
/ G(O) the specimen capacitance and con-

ductance without dc bias; C(V)
10-1 I 10-e and G(V) are the same with dc bias

10 10 10 10 105 of V=2.0kV(afterPetrenkoetal.
f (Hz) 1983).
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jection into ice was first carried out by Engeihart and Riehl (1965,1966), who measured curnt-
voltage characteristics of thin (- 05 mm) ice specimens with Pd electrodes. In this study they
were not able to obtain zones in which current was distinctly proportional to the square of the
voltage, and the current-voltage characteristics were obviously complicated by the effect of
proton traps present in the imperfect ice crystals used in those experiments. Nevertheless,
quantitative evaluations that can be made on the basis of existing theories indicate that in those
first studies, the injection of protons into the bulk was undoubtedly achieved. The same is not
true for their later research (Engelhart et al. 1969), performed on ice specimens of such large
thickness (10 cm) that, although the zone of square dependence was observed in current-volt-
age characteristics, it cannot be explained in terms of space proton injection y - L-3).

To prove that ice bulk conductivity ((Ys and (Y-) increases as a result of proton injection,
Petrenko et al. (1983) made measurements at ac along with dc measurements that eliminate any
doubts concerning the effect of ice/metal interface resistance on current-voltage characteristics.
The changes in a((o) and I due to proton injection into ice are shown in Figures 34 and 35. Us-
ing stationary currents of monopolar proton injection made it possible for H3O+ ion mobility
to be determined (see Table 2).

A remarkable experimental study on the measurement of transient injection currents in ice
was carried out by Eckener et al. (1973). In these experiments a short laser pulse released pro-
tons from a thin palladium black film, which was kept in contact with ice. The released protons,
under the action of force from a constant electric field, were moving from anode to cathode, thus
producing a current pulse, the duration of which was equal to the transit time of protons through
an ice specimen

t = L = L 2  (179)
gl E gj1V

The value of H30 ion mobility, which is obviously the most reliable data for today, has been
obtained by this method (see Table 2).

The extensive use of the injection current technique in ice is limited by basic difficulties in
preparation of electrodes that would efficiently inject protons into ice. Contamination processes
at the ice/Pd interface, which are poorly controlled, deteriorate the reproducibility of results
considerably.

Pd - Pd /

102 6 10-6

C(pF) C. C *pp. @S

I (A)
0o1 I 1/ Figure 35. Direct current I, ca-

1 pacitance C and conductance G

at 100 Hz, as functions of bias
4 voltage Vfor specimen with tuw

G (fi--) H-loaded Pd electrodes ofarea =
x9 mm2, thickness = 0.4 mm,

-10- temperature = -20"C. BrokenFI lines of slopes I and 2 have been
102 103 drawn for the current characteris-

V tics (after Petrenko et al. 1983).
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FIELD EFFECT TRANSISTOR MADE OF ICE

The operation principle of the field effect transistor, if one tries to describe it in a few words,
is as follows. Let us consider a conductor/dielectric interface, as shown in Figure 36. Suppose
that normal to this interface, a static electric field is applied, E(-O) = E±, which attracts charge
carriers to the interface. A thin layer of excess concentration N, (dimension m-2) will form in
the conductor along the interface. Since the electric field at the infinity E(+-o) = 0, then from the
well-known Gauss electrostatic theorem it follows that

El e1 N 1  (180)
Ed EO

where Ed is the dielectric permittivity of the dielectric. Then the surface conductivity of the con-
ductor, resulting from the applied field, is

Xs =elN1g1 =EdEOEjyA- (181)

Formula 181 shows how the value of charge carrier mobility g, can be determined, if the ap-
plied field E± is known from the experimental conditions and ), is measured. If there are two
types of charge carrier present in the conductor (for instance, H30 and OH- ions in ice), then
in order for the second type of charge carrier mobility to be determined, we should just change
the polarity of E±!

In case of ice, this apparent simplicity is complicated by the presence of two more charge
carriers: D- and L-defects. However, the effect of the electric field on their concentration is neg-
ligibly small compared to the change in ion concentrations. This fact is easy to understand if
we recall that the carrier concentration ni(x) depends upon the magnitude of electric potential
at a given point (x), as

ni= ni .exp{-ei9L(x)) (182)t kBT

where (p(x) is the electric potential and ni is the carrier concentration at infinity, where there is
no electric field and (p = 0.
Since the value of the ions'
electric charge e1 = 0.62 e is Dielectric- Conductor
much greater than 0.38 e, Ed E
which is the Bjerrum defect
charge, then the effect of the E --- 3--)I- E(0) = E, Ed/ E

electric field is also much
more profound for ions. Surface Layer of

As long as Oion < aB in the Higher Conductivity
surface Jayer, the static con- --

ductivity will be determined
by ions, so that NN1= •nl(x)-n(oo)]dx

s = _E_2  . Fo.pE± (183) 0
Sn(-)

where the factor (e/el)2 = 2.6 0 X

follows from eq 70, which d`, Figure 36. Dielectric/conductor interface with applied static electric
scribes the static conductivity field E±. The diagram below shows schematically a distribution of charge
of ice. When E1 is increasing, carrier concentration n.
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a,. can exceed as, since the ionic con-
centration grows faster than Bjerrum AU Comb To AC Bridge
defect concentration. Bjerrum defects ElectrodesA
cease to be majority charge carriers and
their mobility and charge appear in eq Cu Electrode
183. So, by means of measuring as at
different magnitudes and polarities of
electric field E, we can determine all
four mobilities. 0.19M SKO2 Layer

The field effect transistor made of
pure ice was experimentally realized by
Petrenko and Maeno (1987). The layout I .I
of such a transistor is shown in Figure
37. A thin (about 1000 A) dielectric layer
of SiO2 is placed onto a conducting sub-
strate made of Si. Gold electrodes are K
deposited onto the SiO 2 layer by means
of photolithography, and are then used I
for surface conductivity measurements. F
To increase the total length of contact
and thus reduce the measured surface
conductivity, the electrodes had the Figure 37. Field effect ice transistor (after Petrenko and
shape of two combs inserted tooth- Maeno 1987).
wards into each other, as shown in the

upper section of Figure 37. A bias was applied between the Si substrate and ice, and a layer was
formed at the SiO2 /ice interface with an excess concentration of either H33O+ ions ("plus" is at
ice) or OH- ions ("plus" is at Si).

Figure 38 illustrates the alternation of the surface conductivity of ice, when rectangular volt-
age pulses of different polarity are applied. The values of gI, and Ig2 determined in this experi-
ment can be found in Table 2.

5x10"

4-

3•-

•2-

0.05

VO

Figure 38. Time diagrams of ice surface conduc-
-1 L- tivity A, and dc bias (V) applied to the transistor

shown in Figure 37; T = -33.1 cC; surface conduc-
0 20 40 60 tivity was measured at f = 10 Hz (after Petrenko and

t (s) Maeno 1987).
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"CROSSOVER" IN THE DIELECTRIC PERMITTIVITY OF ICE

Until now, we have referred to static dielectric permittivity of ice E, as a large quantity, about
102. For the most part this is true. But in some instances, at particular temperatures and impu-
rity concentrations, Es can decrease drastically and achieve small values, comparable with those
of e = 3.2. This phenomenon, which has become known as "crossover," can be successfully
explained in the context of Jaccard's model of the electrical conductivity of ice.

If we examine attentively formula 72, which describes cs as a function of temperature (( =

3.85 kBTroo) and conductivities aion, then we will notice that if the following relationship is sat-
isfied

(1 + 02 _ 03 +04 (184)
eli e

the second term in formula 72 reduces to 0 making E5 equal to c-.
The physical interpretation of such a significant drop in Es is that if the above condition (eq

184) is satisfied, then the charge carriers moving under the action of an external electric field-
the fluxes of ions and Bjerrum defects-appear to be equal (see eq 64). Therefore, the configu-
ration vector fQ = 0 all the time, i.e., the predominant orientation of hydrogen bonds is not formed.
Consequently, there is no additional returning force from !1 acting upon the charge carriers. It
is this force, resulting from Q), that converts pairs of major charge carriers into "elastic dipoles."
In other words, under the condition of eq 183, inasmuch as Q2 = 0, the correlation in charge car-
rier motion ceases and they will move in the same fashion as in an ordinary conductor. In this
case, no further contribution to Es apart from E (dielectric permittivity of media) can be expected!

In very pure ice the "crossover" phenomenon is not observed, since

Gion = (O1 + 02) < < (03 + 04) = O1.- (185)

This is related to the fact that at high temperatures (0 to -10°C), GFB -a-- exceeds by about two
or three orders of magnitude the ionic conductivity aion = (el/e)2 0s. If the temperature is de-
creased, a3 and aio,, since they have comparable values of activation energies--about 0.5-0.6
eV-will never become equal until they reach the lower limit of ac measurements possible in
pure ice (= 150 K).

However, the picture changes drastically if there are impurities present in ice, since their ef-
fect at an and FB is different (see the Concentration of Charge Carriers section).

So, for example, when H30+ "impurity" ions are introduced, aio is almost constant at high
temperatures, while GB decreases rapidly, as temperature decreases. Temperature dependen-
des for (;3 and aion in ice doped with a small amount of I-IF (1.3 x 1014 cm- 3) are shown in Fig-
ure 39. Close to the point Tca = 230 K, (YB and cion become equal, and at lower temperatures they
change places: aB < aio. In other words, at the point of intersection ("crossover"), the ions turn
from minority into majority charge carriers, and Bjerrum defects become the minority charge
carriers. So, we have

at T>Tcr:'y,= YB; G,(e-) 2Gion (186)

at T <Tcr : 19 Gon ; Gs =(_c_) 2 0. (187)

Figure 40 illustrates a sharp decrease of es in the vicinity of T, in HF-doped ice. Hubmann (1978)
observed "crossover" in NH3-doped ice (5 x 10-5 mol/L) when the pressure was increased, since
the latter increased oion and decreased 0 B.
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Figure 39. Temperature depen-
dences ofH3O+ ion conductivity

1- a. and Bjerrum defects' conduc-
1° tivlity ODL Caluated from eýWeri-

mental results, using best-fit
0 DL method. Ice doped by HF in the

10 , I , I I , I , I I a I , concentration of (1.3 ± O.1) x lO12
3.6 4.0 4.4 4.8 5.2 molecules/m3 (after Camplin et al.

1000 KIT 1978).
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101

10° U "Pure* Ice
1 (1.1+0.2)x 10-6 MoletQ

A (8.0.-0.2 )x 10-6 Mole/L!
S(5.1+_0.2 ) x 10-5 MOl/L Figure 40. Ae= e,=- e.asafunc-

10- 1 , , , 1 , , tion of temperature for ice doped
3.6 4.0 4.4 4.8 with HF concentrations (after

1000 K/T Camplin and Glen 1973.)

A remarkable example of "double crossover" can be found in an old report by Steinemann
(1957)--which became a classic-who studied dielectric permittivity of HF-doped ice. At the
high temperatures used by Steinemann (-30C), it is possible to pass through the "crossover"
point twice, since (B changes by an amount proportional to nHF, and o. by an amount pro-
portional to ;ij. Therefore, the equation

aB = ajon-4 YB +a 1 nHF = q o + a 2 (nHF) 1/ 2

can be satisfied at two different values of nHF (see Fig. 41).
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Figure 41. Static relative permittivity ýs and dielectric relaxation timer
at -lO C as a function ofthe concentration nHF in the solutionfrom which

the polycrystalline ice was formed (after Steinemann 1957).

THERMALLY STIMULATED DEPOLARIZATION

The method of Thermally Stimulated Depolarization ([SD) is successfully used in studies
of dielectrics and materials with low conductivity. Its generally accepted advantages are top
instrumental simplicity and high sensitivity. Figure 42 illustrates the basic principles of TSD
measurements.

In this method the material under investigation is first cooled under conditions of an exter-
nal electric field E being applied. Under the action of this field, an electrical polarization P arises
in the material (ice in our case), which, after cooling to a sufficiently low temperature, appears
to be "frozen," i.e., it remains after the external field is switched off. Here, the concept of "low
temperature" is relative, since for alkaline halide crystals room temperature is already sufficiently
low.

When the specimen is heated (usually at a constant rate dT/dt = y) the frozen electric dipole
moment relaxes. An electric current, usually measured by an electrometer and by an XY re-
co)rder, flows through the external circuit. The analysis of the I(t) recording frequently allows
us to determine important parameters of the conductivity processes.

Let us illustrate this with a simple example. The relaxation rate of electric polarization P can
be described in terms of simple exponential time dependence

P= Po exp{+ t} (188)

The relaxation time r as a rule is defined in terms of some thermoactivation process, so that

S= To exp !EA 1 (189)|kBT I

where EA is an activation energy.

60



Cooling Heating

___________ Figure 42. Schemes of polarization

(cooling) and depolarization (heating)
Pen Recorder/ in the TSD technique.

As we have already seen in the Relaxation Times of the Elecric Polarization and Electric Fields in
Ice section, the current density J and dielectric polarization P are related through the simple re-
lationship (eq 151)

dP
dt

and, taking into consideration eq 188, we obtain

l= P. (190)

Now, substituting eq 189 into 190 and considering that

P = -JJ(t)dt (191)
t

we ultimately obtain

l(t) =l =iexp(EA (192)

[T T l o kBT

From this it can be seen that if a graph of the natural logarithm of the left side of eq 192 is
plotted versus ( 1/kBT), then it will be a straight line with slope EA! That is, in this way the value
of the activation energy of the charge transfer process, which leads to relaxation of P, can be
determined. Furthermore, since

Po =fJ (t )dt
0

then the area below the bell-shaped curve of TSD (Fig. 42) contains information about the num-
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ber of "polarized and frozen" dipoles, P being the result of their reorientation. Those are the basic
principles underlying the TSD method. Quite often the simple TSD analysis presented above
is complicated in practice by the presence of several relaxation processes instead of one. For

example, the initial "conserved" polarization P, might be defined in terms of reorientation of
several different concentrations and activation energies of elementary dipoles.

In the heating process different dipoles will relax at different temperatures. Thus, instead of
one "simple" bell-shaped TSD current pulse, we will observe several. For the analysis of such
situations, several special techniques have been developed that allow us to separate one relax-
ation process from another. Let us look at some of those.

If it is possible to guess by the shape of the curve J(t) how many peaks there are on this curve,
then we can employ computer analysis, seeking to find the best fitting theoretical curve.

Another method that allows us to amplify separate "peaks" on the background of other peaks
is switching on the external field E, not during the whole cooling period of the investigated
specimen, but only in that temperature range in which this peak will "develop" afterwards. Then
higher temperature peaks will not appear, because the temperatures are too low for their pro-
duction. TSD "peaks" at lower temperatures will have enough time to relax during the cooling
process, after the external field has been switched off.

A modification of this method is thawing of different dipoles systems in turn; i.e., when the
temperature is increasing and after the first (the lowest temperature) peak is passed, the tem-
perature is decreased again and this already "developed" peak does not contribute to a new
thawing cycle. Then this procedure is repeated until the next peak, and so on.

For ice research the TSD method is attractive because it provides a way to study conductiv-
ity processes at temperatures so low that ac measurements become either impossible or strongly
impeded. The research in TSD on pure and doped-ice monocrystals started over two and a half
decades ago (see Engelhart and Riehl 1965, Gelin and Stubbs 1965). Detailed experimental studies
of TSD in ice were carried out by Bishop and Glen (1969), Loria et al. (1978), Johari and Jones
(1975) and Apekis and Pissis (1987). In the last report the reader can find an extensive list of
papers concerned with TSD in ice. In many papers the observation of several TSD peaks has
been reported, the magnitude and location of which depend upon doping impurity types and
concentrations (see Zaretskii et al. 1987b, for instance). Two examples of "thermograms,"
adopted from this report, are shown in Figure 43. In the reports of various authors concerned
with ice TSD, a considerable discrepancy can be found in activation parameter values, calcu-
lated from those "thermograms," and their various interpretations. We deliberately avoid com-
menting on these numerical data for the reason explained below.

In all the cited experimental reports, the analysis was performed on the basis of simple model

considerations just discussed. However, such considerations are not applicable in the case of
ice, because of the presence of the configuration vector L2, which plays the role of the force field.

Under typical conditions of TSD measurement, when a thin ice specimen is placed between
shorted electrodes (the resistance of the measuring circuit is much less than the resistance of ice),

the electric field within the ice E _= 0, and the major force driving chargecarriers is fL. Therefore,
it is more correct to speak about relaxation of the configuration vector KI rather than relaxation
of polarization P. Since we have

da_ = (01-j2) - (13-4) = JL - LB (193)
dt el e 3

Ji =e (j --j2); JB = e 3 (j3 -j4) (194)

= -*iIi ; E =0; gradni = 0 (195)
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1987b).

then instead of eq 190 we obtain for current density

I = lion +Ja =Q(OB (I'On)(%

But this is an absolutely amazing result! Equation 196 predicts that in the relaxation process
during heating, the ISD current will alter the direction at the "crossover" point, i~e., where

o-/3= q,/el. That is, relaxation currents, initially flowing in the direction opposite to the
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applied external field, after that point, change direction and flow with it! This peculiarity was
theoretically pointed out for the first time by Zaretskii et al. (1987b), and experimentally the
direction change of TSD currents in ice was reported by Johari and Jones (1975). Later, this phe-
nomenon was studied in detail by Aziev et al. (1987). In the report of Zaretskii et al. (1987b), it
was also demonstrated that a similar current inversion can be observed within another regime
of so-called Thermally Stimulated Currents (TSC). Within this regime a specimen is heated in
a strong, constant electric field and currents flowing through it are measured. In fact, such cur-
rent inversion had already been observed in the work of Dengel et al. (1964), in which the alter-
nations of current direction occurred at T = 112 K and T = 144 K. At that time such unusual
behavior of TSC was interpreted in terms of the transition of ice into a ferroelectric state! Now,
however, in the wake of numerous structural studies, we know that there is no ferroelectrical
transition in ice in tis temperature range. It is easy to show, considering relaxation of Q rather
than relaxation of P, that

di = - a (197)
dt 'ED

and instead of eq 192 employed for determining of EA in the TSD method, an essentially more
complicated equation arises

J(t). 13(N) 1 exp ! EA (198)

_ _ _TO (KBT}I(t') Pt)d

t

where

13 - e1  + e 

(199)

The extensive, accumulated experimental data should be processed using formula 198 rather
than 192. However, this rather time-consuming procedure has never been used. Still, if there is
confidence (from independent experiments) that the "crossover" does not occur within the in-
vestigated temperature region, then we can also use (with low accuracy) the more simple rela-
tionship (eq 192).

CONCLUSION

At this point we finish the consideration of the electrical properties of ice. Some particular
aspects that are usually considered along with the electrical properties of ice will be transferred
to future reports to avoid undue complexity and length of this account. Special questions dis-
cussed herein are, as a rule, on a frontier between various fields of physics. Thus, we will con-
sider in detail the surface conductivity of ice in the report, Surface of Ice. There the results of
measurements of the Hall-effect will also be discussed, since some fairly reliable data are obvi-
ously related to surface conductivity only. Thermoelectric effects will be considered in the re-
port, Thermal Properties, along with diffusion processes in ice.

In the report concerned with electromechanical effects, we will also consider the effect of

64



pressure on electrical properties, pseudo piezoelectric properties and electromagnetic emission
from cracks in ice. All these phenomena are interrelated. In the report, Electro-optical Effects in
Ice, both intrinsic and impurity-caused photoconductivity of ice will be described as well as
photoelectrical phenomena at ice/electron conductor interfaces.

As a unifying framework in the description and discussion of the electrical properties of ice,
the author employed Jaccard's theory. This seems to have helped preserve a single, coherent
framework in presenting the material. Such intensive use of this theory, in spite of its evident
merits, does not imply that Jaccard's theory has no drawbacks and is able to cover all "white
spots" on the ice physics map. Nor is it a unique theory. Jaccard's theory is empirical or half-
empirical, i.e., it was not derived from "first principles." This theory is based upon, firstly, the
concept of two fundamentally different types of charge carriers (ions and Bjerrum-defects) and,
secondly, concepts about changes occurring in ice structure as a result of motion of these de-
fects.

As fa; as the first aspect is concerned, then, our ideas about the real microscopic structure of
ice defects may change strongly-and already are changing. The author refers the reader to a
report from the present series called The Structure of Ordinary Ice lh--Part II. Real Structure of Ice,
Defects, in which a description is given of alternative models of protonic structure defects: a
soliton model, a lattice reconstruction model and a model of radicals.

As far as the second whole set of concepts on which Jaccard's model rests is concerned, I
believe it will remain whole, and this make the model extremely viable. In fact, for the validity
of the model, it is important that the hydrogen bonds along which the defects move would re-
orient in the manner perceived by Jaccard. This will be retained in all other models (the soliton
model, for instance). Thus the whole mathematical description suggested by Jaccard will remain!

The model appears to be able to account not only for ac and dc conductivity and dielectric
permittivity, but for numerous physical phenomena that appeared after the reports of Jaccard
(1959, 1964).

This theory, of course, owing to its empirical and schematic nature, cannot give answers to
all questions, such as why the mobilities of ions and Bjerrum defects are what they are. The
answer to this and other questions must be obtained in the context of theory still in develop-
ment, based upon the quantum theory of solids.
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